期刊文献+

基于离散事件辨识的交叉路口自适应信号调度(英文)

Self-Adaptive Signal Scheduling at Crossroad Based on Discrete Event Identification
下载PDF
导出
摘要 交叉路口的车辆调度是长期被关注的热点问题。由于交通流量分布的不确定性,道路拥塞现象不能完全避免。交通输送能力也难以在短期内有质的改善。本文提出了一种自适应信号调度算法,并通过分析不同车道的通行优先级,将车辆的到达、排队等待和离开均分别看成离散事件的不同状态。运用排队论对车辆的每一个状态进行辨识,预测出下一周期内各车道的车辆数目。本文提出了道路交通流量的目标优化函数。在相关约束条件的基础上,信号周期能根据实时交通流量和对应道路的饱和交通流量来进行调整。通过文中实例分析表明:该算法增强了整个路网的吞吐能力,提高了道路的利用率。 The scheduling control at crossroad is a hot topic. Because of the distribution and uncertainty of traffic flow, the situation of congestion can not be avoided completely and the transportation capability can not be improved for a long time. A self-adaptive signal scheduling algorithm is proposed in the paper. Traffic flow priorities in different paths are analyzed at the same time. The arriving, waiting and leaving of vehicles can be seen as the different states of discrete events. The identification of the status of every vehicle can be realized by the theory of queueing. The number of vehicles in every path can be gained by identification. An object function for optimizing traffic flow is presented in the paper. The restriction condition is also given. In the algorithm, traffic signal cycles can be adjusted according to the comparison results of real-time traffic flow and saturation traffic flow in the corresponding directions. Analysis shows the throughput in the total road network is enhanced and the loath utility is improved.
作者 胡扬 桂卫华
出处 《计算机工程与科学》 CSCD 2008年第10期40-42,共3页 Computer Engineering & Science
基金 国家杰出青年科学基金资助项目(60425310)
关键词 自适应信号调度 离散事件辨识 交通流量优先级 物流配送 self-adaptive signal scheduling discrete event identification traffic flow priority logistics
  • 相关文献

参考文献11

  • 1Chung Sheng-Luen, Wu Jun-Chin, Li Chung-Lun. System Identification of Discrete Event Systems[J]. Journal of the Chinese Institute of Engineers, 2004, 27(2) : 203-210.
  • 2Dowlatshahi S. A Modeling Approach to Logistics in Concurrent Engineering[J]. European Journal of Operational Research,1999,115(1): 59-76.
  • 3Lai K-H, Ngai E W T,Cheng T C E. An Empirical Study of Supply Chain Performance in Transport Logistics[J]. Int J Production Economics 2004,87 (3) : 321-331.
  • 4Barad M, Even Sapir D. Flexibility in Logistic Systems-Modeling and Performance Evaluation[J]. International Journal of Production Economics,2003,85(2) : 155-170.
  • 5Lai K H,Ngai E W T,Cheng T C E. Measures for Evaluating Supply Chain Performance in Transport Logistics[J]. Transportation Research Part E,2002,38(6): 439-456.
  • 6Ebben M J R,van der Heijden M C,van Harten A. Dynamic Transport Scheduling Under Multiple Resource Constraints [J]. European Journal of Operational Research, 2005, 167 (2) : 320-335.
  • 7Fischer T, Gehring H. Planning Vehicle Transhipment in a Seaport Automobile Terminal Using a Multi-Agent System [J]. European Journal of Operational Research, 2005, 166 (3) : 726-740.
  • 8Min H,Ko H J,Ko C S. A Genetic Algorithm Approach to Developing the Multi-echelon Reverse Logistics Network for Product Returns[J]. International Journal of Management Science, 2006,34 (1) : 56-69.
  • 9Adler J L, Satapathy G, Manikonda V, et al. A Multi-agent Approach to Cooperative Traffic Management and Route Guidance[J]. Transportation Research Part B, 2005,39 (4): 297-318.
  • 10Lopez Cruz I L, van Willigenburg L G, van Straten G. Efficient Differential Evolution Algorithms for Multimodal Optimal Control Prohlems[J]. Applied Soft Computing, 2003, 3: 97-122.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部