期刊文献+

斜拉桥双索与桥面耦合的非线性参数振动特性分析 被引量:14

Performance Study of the Nonlinear Parametric Vibration of Coupled Bridge Decks and Two Cables
下载PDF
导出
摘要 考虑斜拉索几何非线性的影响,以及桥面运动而引起的拉索内力变化,基于牛顿定律,推导了斜拉桥双索与桥面耦合的非线性振动方程.运用Galerkin方法将非线性偏微分方程转化为关于时间的二阶常微分方程.利用多尺度法对系统进行摄动分析,发现系统存在许多参数共振形式,并针对其中一种参数共振,数值分析了双索在振动过程中的相互影响.结果表明:只变动其中一根索的参数,另一根索的运动特性会受到较大影响.这说明索-索的间接耦合作用不容忽视. The non-linear equations of parametric vibration, in which the variation of internal force as well as the geometric no-linearity was considered, were derived, and then, a set of partial differential equations were diverted into a set of ordinary differential equations by applying Galerkin method. And the method of multiple scales was applied to the differential equation to analyze the parametric resonance of stayedcable. Numerical sim- ulation was done to study the interaction between two cables. The numerical calculation results have shown that, by changing the parameter of one cable only, the vibration performance of the other cable will be affected noticeably, indicating that the indirect coupled phenomenon between two cables can not be neglected.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第10期1-5,共5页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金资助项目(70771038)
关键词 斜拉索 非线性振动 耦合 参数振动 stayed-cable non-linear vibration couplings parametric vibration
  • 相关文献

参考文献10

  • 1SIMPSON A. On the oscillatory motions of translating elastic cables[ J ]. Journal of Sound and Vibration, 1972,20 : 117 - 189.
  • 2MAX Irvine H. Cable structures[M]. London: The Mitpress, 1981.
  • 3HAGEDORN P, SCHAFER B. On nonlinear free vibration of an elastic eable[J ]. Int J Non-linear Mechanics, 1980,15:333 - 340.
  • 4TAKAHASHI K, KONISHI Y. Non-linear vibrations of cables in three dimensions, partl :non-linear free vibrations[J ]. Journal of Sound and Vibration, 1987,118(1):69-84.
  • 5TAKAHASHI K, KONISHI Y. Non-linear vibrations of cables in three dimensions, part2: out-of plane vibrations under in-plane sinusoidally time-varying load[ J ]. Journal of Sound and Vibration, 1987,118(1) :85 - 97.
  • 6PERKINS N C. Model interaction the no-linear response of elastic cables under parametric/external excitation [ J ]. Nonlinear Mechanics, 1992,27 (2) : 233 - 250.
  • 7亢战,钟万勰.斜拉桥参数共振问题的数值研究[J].土木工程学报,1998,31(4):14-22. 被引量:96
  • 8陈水生,孙炳楠.斜拉桥索-桥耦合非线性参数振动数值研究[J].土木工程学报,2003,36(4):70-75. 被引量:56
  • 9汪至刚,孙炳楠.斜拉桥参数振动引起的拉索大幅振动[J].工程力学,2001,18(1):103-109. 被引量:48
  • 10赵跃宇,王连华,陈得良,蒋丽忠.斜拉索三维非线性动力学性态[J].湖南大学学报(自然科学版),2001,28(3):90-96. 被引量:11

二级参考文献22

  • 1单圣涤.县索曲线理论及应用[M].长沙:湖南科学技术出版社,1983..
  • 2赵跃宇.大跨径斜拉桥非线性动力学的模型与理论研究[M].长沙:湖南大学土木工程学院,2000..
  • 3王连华.斜拉索的非线性动力学分析[M].长沙:湖南大学工程力学系,2001..
  • 4汪至刚.大跨度斜拉桥拉索的振动与控制[D].杭 州:浙江大学,2000.
  • 5A H 奈克 D T 穆克.非线性振动[M].北京:高等教育出版社,1996..
  • 6J. L. Lilien, A. Pinto Da Costa. Vibration amplitudes caused by parametric excitation of cable stayed structures[J]. Journal of Sound and vibration 174 (2) 69 - 90,1994.
  • 7Chris Geurts, Ton Vrouwenvelder, Piet van Staalduien, Jaco Reusink (Netherlands). Numerical modelling of rain-windinduced vibration: Erasmus Bridge, Rotterdam [J]. Structural Engineering International, 1998.
  • 8A. Pinto Da Costa, J. A. C. Martins, et al. Oscillations of bridge stay cables induced by periodic motions of deck and/ or towers [J]. Journal of Enginecring Mechanics, 122 (7), 1996.
  • 9Michel Virlogeux (France). Cable vibration in cable-stayed bridges [J]. Bridge Dynamic 213 - 233, 1998.
  • 10H. Max Irvine. Cable Structure [M]. The MIT Press, 1981.

共引文献136

同被引文献140

引证文献14

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部