期刊文献+

一种基于粒子群优化算法的组合预测模型 被引量:1

A Combination Prediction Model Based on Particle Swarm Optimization
下载PDF
导出
摘要 本文首先分析了若干传统的预测方法,提出了一种组合预测模型,在该模型中利用加权系数对各种预测方法进行组合,集成不同来源的预测结果,从不同的侧面反映整个预测过程,力图使预测结果更加精确。在各种预测方法加权系数的确定上,利用PSO快速全局优化的特点,可以减少试算的盲目性,提高模型预测的准确性。 Several traditional prediction methods are analyzed and a combination prediction model is proposed in this paper. In the proposed model,weight-coefficients are used to combine various prediction methods,and integrate the prediction results with different sources, so as to reflect the whole prediction process from different aspects and to make the prediction results more accurate. PSO, which has the characteristics of fast global optimization, is used to determine the weight-coefficients for various prediction methods. This approach can reduce the blindness of search and increase the prediction precision of the model.
出处 《计算机工程与科学》 CSCD 2008年第11期53-55,85,共4页 Computer Engineering & Science
基金 国家973计划资助项目(2007CB310901) 国家自然科学基金资助项目(60603015 60603062) 湖南省自然科学基金资助项目(06jj30035)
关键词 粒子群优化算法 组合预测 加权系数 particle swarm optimization algorithm combination prediction weight-coefficient
  • 相关文献

参考文献14

  • 1Muller K R,Mika S,Ratsch G,et al. An Introduction to Kernel-Based Learning Algorithms[J]. IEEE Trans on Neural Networks, 2001,12(2) : 181-201.
  • 2Adas A. Traffic Models in Broadband Networks[J]. IEEE Communications Magazine, 1997,35(7) : 82-89.
  • 3Chen B S, Peng S C, Wang K C. Traffic Modeling, Prediction, and Congestion Control for High-Speed Networks: A Fuzzy AR Approach [J]. IEEE Trans on Fuzzy Systems, 2000,8(5) : 491-508.
  • 4Paxson V, Floyd S. Wide Area Traffic: The Failure ol Poisson Modeling[J]. IEEE/ACM Trans on Networking,1995,3 (3): 226-244.
  • 5Akar N, Arikan E. Markov Modulated Periodic Arrival Process Offered to an ATM Multiplexer[J]. Performamce Evaluation, 1994,22: 175-190.
  • 6Bhat V N. Renewal Approximations of the Switched Poisson Processes and Their Applications to Queueing System[J]. Journal of Operational Research Society, 1994, 45 (3): 345- 353.
  • 7Hush D R, Home B G. Progress in Supervised Neural Networks[J]. IEEE Signal Processing Magazine, 1993,10(1) : 8- 39.
  • 8Davey N, Hunt S P, Frank R J. Time Series Prediction and Neural Networks[C]//Proe of the 5th Int'l Conf on Engineering Applications of Neural Networks, 1999: 93-98.
  • 9Edwards T, Tansley D S W, Frank R J, et al. Traffic Trends Analysis Using Neural Networks [C]// Proc of the Int'l Workshop on Applications of Neural Networks to Telecommunications, 1997:157-164.
  • 10Jaeek J,Krzyszt K. Rough Set Reduction of Attributes and Their Domains for Neural Networks[J]. Computational Intelligence, 995,11 (2): 339-347.

同被引文献5

  • 1Sumantra Mandal, Sivaprasad P V, Venugopal S, et al. Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion [ J ]. Applied Soft Computing, 2009(9) : 237-244.
  • 2Botlani Esfahani M, Toroghinejad M R, Key Yeganeh A R. Mod- eling the yield strength of hot strip low carbon steels by artificial- neural network [ J ]. Materials and Design, 2009, 30:3653 - 3658.
  • 3Huang Jun, Xu Yuelan. Combination predicting neural network model for E4303 electrode mechanical properties [ C ]// Institute of Electrical and Electronics Engineers, Inc. Sixth international con- ference on natural computation. Shandong Yantai, 2010:1610 - 1613.
  • 4张礼兵,金菊良,程吉林,赵国峰.基于人工神经网络的模型择优预测方法及应用[J].水力发电学报,2007,26(6):12-16. 被引量:7
  • 5刘旭,于国祥,沈西挺.基于神经网络的预测模型的比较研究[J].河北省科学院学报,2007,24(4):7-12. 被引量:9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部