期刊文献+

基于量子逻辑的下推自动机的代数刻画 被引量:1

Algebraic Characterization of Pushdown Automata Based on Quantum Logic
下载PDF
导出
摘要 首先,本文提出量子下推自动机(简记为L-VPDA)的概念,从代数角度出发详细研究了此类自动机的性质,同时建立此类自动机的代数刻画,即利用量子状态构造证明了任意L-VPDA与状态转移为经典函数且具有量子终状态的L-VPDA间的相互等价性;其次详细研究了量子上下文无关语言的代数刻画以及对于正则运算的封闭性。 Firstly, the notion of orthomodular lattice-valued pushdown automaton(abbr. L-VPDA) is introduced, we traverse some algebraic properties of these automata in detail and also establish the algebraic features of these automata, i. e, by using the means of quantum state construction. We prove the fact that an arbitrary L-VPDA can accept the same L-valued language by the final states and by one L-VPDA with the crisp transition relation and fuzzy final states. Secondly, we discuss the algebraic characterization of orthomodular lattice-valued context-free languages, and also deal with the closed properties of these L-valued languages under some regular operations in particular at the same time.
出处 《计算机工程与科学》 CSCD 2008年第11期72-74,共3页 Computer Engineering & Science
基金 国家自然科学基金资助项目(10571112) 陕西师范大学青年科技项目(200701008)
关键词 量子逻辑 正交模格 量子下推自动机 量子上下文无关语言 代数刻画 quantum logic orthomodular lattice orthomodular lattice-valued pushdown automaton orthomodular latticevalued context-free language algebraie charaeterization
  • 相关文献

参考文献15

  • 1Birkhoff G,von Neumann J. The Logic of Quantum Mechanics[J]. Ann Math,1996,37:823-843.
  • 2Eilenberg S. Automata, Languages and Machines[M]. Vol A, Vol B. New York: Academic Press, 1974.
  • 3Gruska J. Quantum Computing[M]. London: McGraw-Hill, 1999.
  • 4Hopcroft J E, Ullman J D. Introduction to Automata Theory, Languages and Computation[M]. New York: Addson- Wesley, 1979.
  • 5Kalmbach G. Orthomodular Lattices[M]. London: Academic Press, 1983.
  • 6Khoussainov B, Nerode A. Automata Theory and Its Applications[M]. Boston: Birkauser, 2001.
  • 7Li Y M,Li Z H. Free Semilattices and Strongly Free Semilatrices Generated by Partially Ordered Sets[J]. Northeastern Mathematical Journal, 1993,9 (3) : 359-366.
  • 8Nielsen M A,Chuang I L. Quantum Computation and Quantum Information [M]. Cambridge: Cambridge University, 2000.
  • 9Ptak P, Pulmannova S. Orthomodular Structures as Quantum Logics[M]. Dordrecht: Kluwer, 1991.
  • 10Qiu D W. Automata Theory Based on Quantum Logic: Some Characterizations[J]. Information and Computation, 2004,190:179-195.

二级参考文献17

  • 1Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000.
  • 2Gruska J. Quantum Computing. London: McGraw-Hill, 1999.
  • 3Ying M S. Automata theory based on quantum logic Ⅰ. Int J Theor Phys, 2000, 39:981--991.
  • 4Ying M S. Automata theory based on quantum logic Ⅱ. Int J Theor Phys, 2000, 39:2545-2557.
  • 5Qiu D W. Automata theory based on quantum logic: Some characterizations. Inform Comput, 2004, 190:179-195.
  • 6Lu R Q, Zheng H. Lattices of quantum automata. Internat J Theoret Phys, 2003, 42:1425-1449.
  • 7Cheng W, Wang J. Grammar theory based on quantum logic. Internat J Theoret Phys, 2003, 42:1677--1691.
  • 8Ying M S. A theory of computation based on quantum Logic (Ⅰ). Theoret Comput Sci, 2005, 344:134--207.
  • 9Birkhoff G, von Neumann J. The logic of quantum mechanics. Ann Math, 1936, 37:823--843.
  • 10Ptak P, Pulmannova S. Orthomodular Structures as Quantum Logics. Dordrecht: Kluwer, 1991.

共引文献5

同被引文献4

引证文献1

  • 1NIU Yu-qi,MENG Xiao-ran,YUAN Jian.Extended l*-Module[J].Chinese Quarterly Journal of Mathematics,2010,25(3):390-398.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部