期刊文献+

基于支持向量机的面向对象软件易发性故障预测 被引量:1

Object-Oriented Software Fault-Proneness Prediction Using Support Vector Machine
下载PDF
导出
摘要 本文考虑软件故障严重程度,并采用C&K面向对象度量集,以支持向量机分析方法为数学工具,建立一种基于面向对象软件易发性故障预测模型。实验结果表明,与基于朴素贝叶斯的预测模型、随机预测模型和NNge预测模型相比,本文提出的预测模型对于高严重程度故障、低严重程度故障以及未划分故障严重程度的情形均获得较好的预测效果。 With software fault severity considered, a software fault-proneness prediction model is proposed in this paper by Support Vector Machine and the Chidarnber-Kemerer (C&K) object- oriented metrics. The experimental results show that this presented model obtains better results than that of the Naive Bayesian, the Random forest, and the NNge predietion models when the high and low severity faults and the ungraded severity fault are distinguished.
出处 《计算机工程与科学》 CSCD 2008年第11期115-117,共3页 Computer Engineering & Science
基金 广西科学基金资助项目(桂科自0728033) 广西研究生教育创新计划资助项目
关键词 面向对象 软件故障易发性 支持向量机 软件故障严重程度 object-oriented software fault-proneness support veetor maehine software fault severity
  • 相关文献

参考文献10

  • 1Amasaki S, Takagi Y, Mizuno O, et al. A Bayesian Belief Network for Assessing the Likelihood of Fault Content[C]// Proc of the 14th IEEE Int'l Syrup on Software Reliability Engineering, 2003:215- 226
  • 2Thwin M M T, Quah T S. Application of Neural Networks for Software Quality Prediction Using Object-Oriented Metries[J]. Journal of Systems and Software, 2005,76(2): 147-156.
  • 3胡求索,钟诚.基于神经网络的软件模块风险性预测模型[J].计算机工程与应用,2007,43(18):106-110. 被引量:10
  • 4Guo L, Ma Y, Cukic B, et al. Robust Prediction of Fault- Proneness by Random Forests[C]//Proc of the Int'l Symp on Software Reliability Engineering, 2004:417-428.
  • 5Guo P,Lyu M R. Software Quality Prediction Using Mixture Models with EM Algorithm[C]//Proc of the 1st IEEE Asia- Pacific Conf on Quality Software, 2000 : 69-78
  • 6Zhou Y, Leung H. Empirical Analysis of Object-Oriented Design Metrics for Predicting High and Low Severity Faults[J]. IEEE Trans on Software Engineering, 2006, 32 (10): 771- 789.
  • 7Xing F, Guo P, Lyu M R. A Novel Method for Early Soft-ware Quality Prediction Based on Support Vector Machine [C]//Proc of the 16th IEEE Int'l Syrup on Software Reliability Engineering, 2005 : 213-222.
  • 8Elish K O, Elish M O. Predicting Defect-Prone Software Modules Using Support Vector Machine [J]. Journal of Systems and Software, 2007, 81 (5):649-660.
  • 9Gondra I. Applying Machine Learning to Software Fault- Proneness Prediction[J]. Journal of Systems and Software, 2008,81(2) : 186-195.
  • 10http://mdp. ivv. nasa. gov/.

二级参考文献15

  • 1LeGall G,Adam M F,Derriennic H,et al.Studies on measuring software[J].IEEE Journal of Selected Areas in Communications,1990,8(2):234-245.
  • 2Karunanithi N,Whitley D,Malaiya Y K.Using neural networks in reliability prediction[J].IEEE Software,1992,9 (4):53-59.
  • 3Munson J C,Khoshgoftaar T M.The detection of fault-prone programs[J].IEEE Transactions on Software Engineering,1992,18 (5):423-433.
  • 4Porter A A,Selby R W.Empirically guided software development using metric-based classification trees[J].IEEE Software,1990,7(2):46-54.
  • 5Khoshgoftaar T M,Lanning D L,Pandya A S.A neural network modeling methodology for detection of high-risk programs[C]//Proc 4th Int Symp Software Reliability Eng,Denver,CO,Nov 1993:302-309.
  • 6Khoshgoftaar T M,Pandya A S,Lanning D L.A comparative study of pattern recognition techniques for quality evaluation of telecommunications softwre[J].IEEE Journal on Selested in Communications,1994,12(2):279-291.
  • 7Khoshgoftaar T M,Allen E B,Hudepohl J P,et al.Application of neural networks to software quality modeling of a very large telecommunications system[J].IEEE Transactions on Neural Networks,1997,8 (4):902-909.
  • 8Khoshgoftaar T M,Allen 'E B.Predicting testability of program modules using a neural network[C]//Proceedings of Symposium of Application-Specific Systems and Software Engineering Technology,2000.
  • 9Wei Zhi,Khoshgoftaar T M.Software quality prediction for high-assurance network telecommunications systems[J].Computer Journal,2001,44(6):557-568.
  • 10Neumann D E.An enhanced neural network technique for software risk analysis[J].IEEE Transactions on Software Engineering,2002,28(9):904-912.

共引文献9

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部