期刊文献+

对流占优微分积分方程的间断时空有限元法

The Space-Time Discontinuous Finite Element Method for Convection-Dominated Parabolic Integrodifferential Equation
下载PDF
导出
摘要 采用Galerkin间断时空有限元法来处理对流占优微分积分方程,在时间离散区间内,利用Radau点处Lagrange插值多项式的特点,去掉间断时空有限元证明过程中对时空网格的限制条件,并给出了时间最大模、空间L_2模. In this article, the Galerkin Space-Time Discontinuous Finite Element Method is chosen to process convection-dominated parabolic integrodifferential equations. At discrete intervals of time, we make use of the properties of Lagrange Interpolating polynomials at Radau spot to eliminate the restriction condition of Space-Time meshes of conventional space-time discontinuous Glerkin methods, and obtain the maximum-norm in time and the L -norm in space.
出处 《东莞理工学院学报》 2008年第5期20-25,共6页 Journal of Dongguan University of Technology
基金 国家自然科学基金资助项目(10871031)
关键词 对流占优微分积分方程 间断时空有限元 误差估计 convection-dominated parabolic integrodifferential equations space-time discontinuous finite element method error estimate
  • 相关文献

参考文献5

二级参考文献23

  • 1王立俊.双曲型方程的变网格有限元方法.计算数学,1988,10(3):266-271.
  • 2[1]Eriksson K, Johson C. Adaptive finite element m ethods for parabolic problems Ⅰ: A linear model problem[J]. SIAM J Numer An al,1991,28(1):43—77.
  • 3[2]Eriksson K, Johson C. Adaptive finite element methods for paraboli c problems Ⅱ: Optimal error estimates in L∞L2 and L∞L∞[J] . SIAM J Numer Anal,1995,32(3):706—740.
  • 4[3]Eriksson K, Johson C. Adaptive finite element methods for paraboli c problems Ⅳ: A nonlinear problem[J]. SIAM J Numer Anal,1995,32 (3):1729—1749.
  • 5[4]Makridakis CH G, Babuska I. On the stability of the discontinuous Galerkin method for the heat equation[J]. SIAM J Numer Anal,1997,3 4(1):389—401.
  • 6[5]Kabakashian C, Makridakis C. A space-time finite element method fo r the nonlinear Schrodinger equation: the discontinuous Galerkin method[J]. Math Comput,1998,97(222):479—499.
  • 7[6]Brenner S C, Scoot L R. The Mathematical Theory of Finite Elemen t Method[M]. New York: Springer-Verlag,1994.
  • 8[7]Ciarlet P G. The Finite Element Method for Elliptic Problems[ M]. Amsterdam: North-Holland,1978.
  • 9Delfour M,Fortin M,Payre G.Finite-difference solution of a non-linear Schrodinger equation[J].Journal of Computational Physics,1981,44(12):277-288.
  • 10Qhannes Karakashian,Charalambos Makridakis.A space-time finite element method for The nonlinear Schrodinger equation:the discontiouous Galerkin method[J].Mathematics of Computation,1998,67(1):479-499.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部