期刊文献+

硫钝化GaP(001)表面的结构及电学性质研究

Structural and Electronic Properties of Sulfur Passivation of GaP(001) Surface
下载PDF
导出
摘要 基于第一性原理的密度泛函理论,分析了覆盖度为1 ML(monolayer)的硫吸附在磷截止和镓截止的GaP(001)(1×2)表面的结构和电学属性。能量计算表明,最稳定的吸附模型均是SHB+ST4,镓和磷二聚物都被断开,周期单元由(1×2)变成(1×1),硫原子吸附在桥位置,Ga-S键比P-S键更稳定。电学性质分析可知,硫吸附在镓截止GaP表面后能隙中的表面态大幅度减少,而吸附在磷截止的表面时表面态并没有减少且在0.74 eV处多了一个新峰,硫吸附在镓截止表面后的态密度分布与实验结果吻合很好。因此,1 ML的硫吸附在GaP(001)面时表面上最主要形成Ga-S键。 Using first-principles total energy method, the structural and electronic properties of Ga- and P-terminated GAP(001) (1 × 2) surfaces adsorbed with a monolayer of sulfur were studied. Total energy calculations show that all dimers are broken and the periodicity becomes (1× 1). Sulfur atoms occupy bridge sites on both Ga- and P-terminated surfaces. The S--Ga bond is stronger than the S--P bond. The electronic analysis indicated that the surface state within the energy gap on the Ga-terminated GaP surface was noticeably reduced by the sulfur adsorption, while the reduction did not occur on the P-terminated surface and a new peak existed at 0.74 eV. DOS analysis of the Ga-terminated surface agrees well with the experiments. Thus, it is suggested that the S--Ga bonds are dominantly formed at the S-covered GAP(001) surface.
出处 《半导体光电》 EI CAS CSCD 北大核心 2008年第5期696-699,704,共5页 Semiconductor Optoelectronics
基金 国家自然科学基金资助项目(10175042) 重庆市科委基金资助项目(CSTC,2007BB4385)
关键词 密度泛函理论 磷化镓 能带 态密度 功函变化 density functional theory GaP energy band density of states work-functionchange
  • 相关文献

参考文献17

  • 1Bessolov V N,Lebedev M V. Chalcogenide passivation of Ⅲ-Ⅴ semiconductor surfaces [J]. Semiconductors, 1998, 32(11): 1 141-1 156.
  • 2Sanada N,Shimamuram, Fukuda Y. Clean GaP(001)- (4 × 2) and H2 S-treated (1 × 2) S surface structures studied by scanning tunneling microscopy[J]. Appl. Phys. Lett. , 1995, 67(10): 1 432-1 435.
  • 3Fukuda Y,Sanada N, Kuroda M, et al. H2 S-treated GaP (001) surface studied by low-energy electron diffraction, Auger electron spectroscopy, and X-ray photoelectron spectroscopy[J]. Appl. Phys. Lett. , 1992, 61(8): 955-958.
  • 4Fukuda Y, Shimamura M, Sanada N. Spectroscopic evidence for reduction of unoccupied states in the band gap of GAP(001) by H2S passjvation[J]. J. Appl. Phys. , 1994, 76(6) : 3 632-3 635.
  • 5Fukuda Y,Sanadan, Kuroda M, et al. Adsorption of H2 S on GaP (001) surface and passivation effects studied by AES, LEED and xPS[J]. Appl. Surf. Sci. , 1996, 92(2): 212-215.
  • 6Liu K Z,Suzuki Y, Fukuda Y. AES and XPS studies of a GAP(001) surface treated by S2 Cl2 and P2S5/ (NH4)2Sx[J].Appl. Surf. Sci., 2004, 237(8):627- 630.
  • 7Liu K Z, Suzuki Y, Fukuda Y. Surface analysis of (NH2)2CS-treated GAP(001) by AES and XPS[J]. Surf. Interface Anal. , 2004,36(1) :966-968.
  • 8Suzuki Y, Sanada N, Shimamura M, et al. High- resolution XPS analysis of GAP(0 0 1), (1 1 1)A, and (1 1 1) B surfaces passivated by (NH4)2Sx solution [J]. Appl. Surf. Sci. , 2004,235(6) :260-266.
  • 9Lu Z H,Graham M J., Structure of S on a passivated GAP(001) surface[J]. J. Appl. Phys. , 1994, 75(11): 7 567-7 570.
  • 10Oigawa H,Fan J-F, Nannichi Y, et al. Universal passivation effect of (NH4)2Sx treatment on the surface of Ⅲ-Ⅴ compound semiconductors[J]. Jpn. J. Appl. Phys. , 1991, 27(3A): L322-L325.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部