期刊文献+

有关可交换随机变量序列的一个结论 被引量:2

A conclusion of exchangeable random variables
下载PDF
导出
摘要 研究一定相关性条件下可交换随机变量与独立同分布随机变量的结果之间的相似与不同。利用逆鞅、截尾等方法,解决其渐近性质的问题。由于可交换随机变量的基本结构定理De Finetti定理——可交换随机变量无限序列以其尾σ-代数为条件是独立同分布的,因此可交换随机变量应该具有类似于独立同分布随机变量的性质。 In this paper, the similarity and difference of identically distributed random variables and exchangeable random variables sequences in certain relevant conditions are researched. This paper uses reverse martingale approach to solve the approximate behavior problems of finite exchangeable random variables se- quences. As the De Finetti's theorem states that infinite exchangeable random variables sequences is independent and identically distributed with the condition of the tailor - algebra. So some results about independent identically distributed random variables is similar to exchangeable random variables.
出处 《陕西理工学院学报(自然科学版)》 2008年第3期60-63,共4页 Journal of Shananxi University of Technology:Natural Science Edition
基金 安康学院科研启动专项经费资助项目(AYQDZR200709)
关键词 可交换 独立同分布 随机变量 exchangeability independent and identically distributed random variables
  • 相关文献

参考文献7

二级参考文献2

共引文献7

同被引文献21

  • 1徐明曜.有限群导引[M].第2版.北京:科学出版社,2007.16-48.
  • 2Vapnik V N. The Nature of Statistical Learning Theory[ M]. 2nd edition, New York:Springer-Verlag, 1999.
  • 3Scholkspf B, Smola A. Learning with Kernels [ M]. Cambridge MA:MIT Press ,2002.
  • 4Mangasarian O. A finite Newton method for classification [ J ]. Optimization Methods and Soft-ware ,2002,17 (5) :913-929.
  • 5Fung G, Mangasarian O. Finite Newton method for Lagrangian support vector machine classifica-tion[ J ]. Neurocomputing, 2003,55 (1-2) :39-55.
  • 6Keerthl S, DeCoste D. A modified finite Newton method for fast solution of large scale linear SVMS [ J ]. Journal of Machine Learning Research,2005, (6) : 341-361.
  • 7ChapeUe O. Training a support vector machine in the primal[ J ]. Neural Computation ,2007,19 ( 5 ) : 1155-1178.
  • 8Bo L, Wang L, Jiao L. Reeursive finite Newton algorithm for support vector regression in the primal [ J ]. Neural Computa- tion,2007, (19) : 1082-1096.
  • 9Bo L,Wang L,Jiao L. Selecting a Reduced Set for Building Sparse Support Vector Regression in the Primal[J]. In The E- leventh Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'07) ,2007,4426:35-47.
  • 10Yuille A. The concave-convex procedure [ J ]. Neural Computation,2003,15 (4) :915-936.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部