期刊文献+

筏型地基加强梁的拓扑优化分析

Topology Optimization Analysis for Reinforced Beam of Raft Foundation
下载PDF
导出
摘要 对筏型基础的加强梁分布进行拓扑优化分析,提出一种应力约束下的格栅结构的拓扑优化方法。采用正交异性增强复合材料模拟该类格栅连续体(或加肋板),该结构由无限细无限密的梁(或肋)构成。以梁在结点处的密度和方向作为设计变量,优化过程采用满应力准则法,利用有限元分析,经过少量迭代可以建立优化的材料连续分布场。借助程序自动生成的弯矩分布图,指导加强梁或加强筋的分布与走向,成为加肋板,显著地减小板的挠度,可以在原有基础上适当减小板的厚度,节省材料。 A method of topology optimization of grillage structure with stress constraints is presented and applied to analyze the reinforced beam of raft foundation. Fiber-reinforced orthotropic composite material is employed as the material model to simulate the constitutive relation of grillage-like continua/stiffened-raft. The structure contains infinite number of beams/ribs of infinitesimal spacing. The beams/ribs densities and orientations at the nodes are taken as the design variables. The optimization is accomplished by using finite element analysis and on the base of fully-stressed criterion and Grillage-like-continuum is achieved after several iterations. Finally the distribution and orientations of reinforced beam is determined according to the moment distribution produced by soft automatically. The stiffened-plate can obviously reduce the deflections of the plate, so the thickness of the plate could be reduced appropriately to save materials.
出处 《华中科技大学学报(城市科学版)》 CAS 2008年第3期180-183,共4页 Journal of Huazhong University of Science and Technology
基金 国家自然科学基金(10872072) 教育部科学技术研究重点项目(208169) 福建省自然科学基金(E0640010)
关键词 拓扑优化 应力约束 格栅 加肋板 筏型基础 topology optimization plate stress constraints grillage stiffened plate raft foundation
  • 相关文献

参考文献10

  • 1Michell A G M. The Limits of Economy of Material in Frame Structure[J]. Philosophical Magazine, 1904, 8(6): 589-597.
  • 2Wood R H. Plastic and Elastic Design of Slabs and Plates[M]. London: Thames and Hudson, 1961.
  • 3Morley C T. The Minimum Reinforcement of Concrete Slabs[J]. International Journal of Mechanical Sciences, 1966, 8(4): 305-319.
  • 4Rozvany G I N, Olhoff N, Bendsoe M P, et al. Least-weight Design of Perforated Elastic Plate Ⅱ [J]. International Journal of Solids and Structures, 1987, 23(4): 537-550.
  • 5Rozvany G I N, Prager W. Optimal Load Transmission by Flexure[J]. Computer Methods in Applied Mechanics and Engineering, 1972, 1(3): 253-263.
  • 6Rozvany G I N, Prager W. Optimal Design of Flexural Systems: Beams, Grillages, Slabs, Plates and Shells[M]. Oxford: Pergamon press, 1976.
  • 7Rozvany G I N, Bends E M P, Kirsch U. Layout Optimization of Structures[J]. Applied Mechanics Reviews, 1995, 48(2): 41-119.
  • 8Rozvany G I N. Basic Geometrical Properties of Exact Optimal Composite Plates[J]. Computers and Structures, 2000, 76(1-3): 263-275.
  • 9周克民,胡云昌.利用有限元构造Michell桁架的一种方法[J].力学学报,2002,34(6):935-944. 被引量:18
  • 10Zhou Kemin, Li Xia. The Exact Weight of Discretized Michell Trusses for a Central Point Load[J]. Struct Opt, 2004, 28(1): 69-72.

二级参考文献8

  • 1[1]Michell AGM. The limits of economy of material in frame-structures. Phil Mag, 1904, 8:589~597
  • 2[2]Rozvany GIN. Exact analytical solutions for some popular benchmark problems in topology optimization. Struct Optim, 1998, 15:42~48
  • 3[3]Hegemier GA, Prager W. On Michell trusses. Int J Me ch Sci, 1969, 11:209~215
  • 4[4]Rozvany GIN. Basic geometrical properties of exact optimal composite plates. Comput Struct, 2000, 76:263~275
  • 5[5]Lewinski T, Zhou M, Rozvany GIN. Extended exact solutions for least-weight truss layouts. Int J Mech Sci,1994, 36(5): 375~419
  • 6[6]Hemp WS. Optimum Structure. Oxford: Clarendon Press, 1973. 70~101
  • 7[7]Hassani B, Hinton E. A review of homogenization and topology optimization. Comput Struct, 1998, 69:707~756
  • 8[8]Sigmund O, Petersson J. Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Strcut Optim, 1998, 16:68~75

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部