期刊文献+

太湖北部沉积物中铁硫的地球化学特征研究 被引量:11

Geochemical characteristics of iron and sulfur in sediments of northern Lake Taihu
下载PDF
导出
摘要 选择太湖北部柱状沉积物为研究对象,对沉积物及间隙水中铁硫的地球化学特征进行了研究。结果显示,间隙水中Fe2+的平均浓度是S2-平均浓度的82倍,其值为9.6~270.5μmol/L。这说明沉积物中是以Fe3+的还原为主,而非SO24-。沉积物中还原性无机硫以黄铁矿为主,其次为AVS,最后为单质硫。沉积物中的Fe2+的浓度均高于其他形态的铁,约占总铁含量的30%~40%。活性铁的浓度为109.86~208.16μmol/g,仅占总铁的20%左右。沉积物各层中与硫结合的铁仅占总铁的0.12%~2.35%,占活性铁的0.39%~8.36%。通过分析铁硫之间的关系并结合蓝藻爆发的时间推断,铁硫化合物的生成不是PO34-释放的原因。太湖北部沉积物中Fe-S及P-S之间相互关系较弱。 The sediments of northern Taihu Lake were selected to study the geochemical characteristics of iron and sulfur in porewater and sediments. The results showed that the mean concentration of Fe^2+ was 82 times higher than that of S2 , ranging from 9.6 to 270.5 μmol/L. This indicated that reduction environment in sediment was dominated by Fe^3+ but not SO4^2- . Elemental sulfur occupied the least percentage of inorganic reduced sulfur in sediments (0.4% -7% ), then was AVS and pyrite taken up the most proportion of inorganic reduced sulfur (〉 75). The concentration of Fe2. was higher than those of other iron species, occupying 30% -40% of total iron approximately. The concentration of reactive iron was in the range of 109.9 - 208.2 μmol/g, merely occupying 20% of total iron. The sulfide-bound iron (AVS-Fe plus Pyrite-Fe) of each segments merely occupied 0. 12% 2. 35% of total iron, 0. 39% - 8.36% of the reactive iron. Through an analysis of the relationship between iron and sulfur, and the blooming time of algal, it is inferred that the formation of iron-sulfide minerals is not the reason that causes the release of PO3 . Fe-S and P-S just show weak relationship in sediments of northern Lake Taihu.
出处 《地球化学》 CAS CSCD 北大核心 2008年第6期595-601,共7页 Geochimica
基金 国家自然科学基金(40730528,40601087) 江苏省太湖水污染治理专项基金(BS2007161)
关键词 还原性无机硫 活性铁 硫结合铁 太湖 reduced inorganic sulfur reactive iron sulfide-bound iron Lake Taihu
  • 相关文献

参考文献21

  • 1Thode-Andersen S, Jφrgensen B B. Sulfate reduction and the formarion of ^35S-labelled FeS, FeS2 and S^0 in coastal marine sediments [J]. Limnol Oceanogr, 1989, 34(5): 793-806.
  • 2Mamette E C L, Breemen N V, Hordijk K A, Cappenberg T E. Pyrite formation in two freshwater systems in the Netherlands [J]. Geochim Cosmochim Acta, 1993, 57(17): 4165 -4177.
  • 3Feng Jin-an, Hsieh Y P. Wetlands and aquatic processes: Sulfate reduction in freshwater wetland softs and the effects of sulfate and substrate loading [J]. J Environ Qual, 1998, 27(4): 968 -972.
  • 4Roden E E, Wetzel R C. Kinetics of microbial Fe ( Ⅲ ) oxide reduction in freshwater wetland sediments [J]. Limnol Oceanogr, 2002, 47(1): 198-211.
  • 5Bak F, Pfennig N. Microbial sulfate reduction in littoral sediment of Lake Constance [J] . FEMS Microbiol Lett, 1991, 85(1): 31 -42.
  • 6Burton E D, Bush R T, Sullivan L A. Fractionation and extractability of sulfur, iron and trace elements in sulfldic sediments[J]. Chemosphere, 2006, 64(8): 1421-1428.
  • 7Rozan T F, Taillefert M, Trouwborst R E, Glazer B T, Ma Shufen, Herszage J, Valdes L M, Price K S, Luther G W. Iron-sulfurphosphorus cycling in the sediments of a shallow coastal bay: Implications for sediment nutrient release and benthic macroalgal blooms[J]. Limnol Oceanogr, 2002, 47(5): 1346-1354.
  • 8张路,范成新,池俏俏,王建军,秦伯强.太湖及其主要入湖河流沉积磷形态分布研究[J].地球化学,2004,33(4):423-432. 被引量:99
  • 9Burton E D, Bush R T, Sullivan L A. Reduced inorganic sulfur speciation in drain sediments from acid sulfate soil landscapes [J]. Environ Sci Technol, 2006, 40(3): 888 -893.
  • 10A comparison of sample handling and analytical methods for determination of acid volatile sulfides in sodlment[J]. Mar Chem, 1996, 52(3/4): 211-220.

二级参考文献36

共引文献139

同被引文献205

引证文献11

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部