期刊文献+

Compound soft regenerated skull material for repairing dog skull defects using bone morphogenetic protein as an inductor and nanohydroxyapatite as a scaffold

Compound soft regenerated skull material for repairing dog skull defects using bone morphogenetic protein as an inductor and nanohydroxyapatite as a scaffold
下载PDF
导出
摘要 BACKGROUND:In previous studies of skull defects and regeneration, bone morphogenetic protein as an inductor and nanohydroxyapatite as a scaffold have been cocultured with osteoblasts. OBJECTIVE: To verify the characteristics of the new skull regenerated material after compound soft regenerated skull material implantation. DESIGN, TIME AND SETTING: The self-control and inter-group control animal experiment was performed at the Sun Yat-sen University, China from February to July 2007. MATERIALS: Twenty-four healthy adult dogs of both genders weighing 15–20 kg were used in this study. Nanohydroxyapatite as a scaffold was cocultured with osteoblasts. Using demineralized canine bone matrix as a carrier, recombinant human bone morphogenetic protein-2 was employed to prepare compound soft regenerated skull material. Self-designed compound soft regenerated skull material was implanted in models of skull defects. METHODS: Animals were randomly assigned into two groups, Group A (n = 16) and Group B (n = 8). Bilateral 2.5-cm-diameter full-thickness parietal skull defects were made in all animals. In Group A, the right side was reconstructed with calcium alginate gel, osteoblasts, and nanometer bone meal composite; the left side was reconstructed with calcium alginate gel, osteoblasts, nanometer bone meal and recombinant human bone morphogenetic protein-2 composite. In Group B, the right side was kept as a simple skull defect, and the left side was reconstructed with calcium alginate gel, osteoblasts, nanometer bone meal and recombinant human bone morphogenetic protein-2 composite. MAIN OUTCOME MEASURES: Bone regeneration and histopathological changes at the site of the skull defect were observed with an optical microscope and a scanning electron microscope after surgery. The ability to form bone was measured by alizarin red S staining. In vitro cultured osteoblasts were observed for morphology. RESULTS: One month following surgery, newly formed bone trabeculae mostly covered the broken ends of the fractured bone and grew towards the defect regions. Two months after surgery, many disordered bone islands had formed. Three months after surgery, mature bone, medullary cavities and a large number of new bones were detected in the defect regions. Six months after surgery, the left defect was mostly repaired, with a high bone density compared with the right side in Groups A and B. The right defect was mostly repaired in Group A, but only a small fraction of the right defects was repaired in Group B. CONCLUSION: A composite of calcium alginate gel, osteoblasts, nanometer bone meal and recombinant human bone morphogenetic protein-2 can metabolize by itself, gradually ossify and form new bone. BACKGROUND:In previous studies of skull defects and regeneration, bone morphogenetic protein as an inductor and nanohydroxyapatite as a scaffold have been cocultured with osteoblasts. OBJECTIVE: To verify the characteristics of the new skull regenerated material after compound soft regenerated skull material implantation. DESIGN, TIME AND SETTING: The self-control and inter-group control animal experiment was performed at the Sun Yat-sen University, China from February to July 2007. MATERIALS: Twenty-four healthy adult dogs of both genders weighing 15–20 kg were used in this study. Nanohydroxyapatite as a scaffold was cocultured with osteoblasts. Using demineralized canine bone matrix as a carrier, recombinant human bone morphogenetic protein-2 was employed to prepare compound soft regenerated skull material. Self-designed compound soft regenerated skull material was implanted in models of skull defects. METHODS: Animals were randomly assigned into two groups, Group A (n = 16) and Group B (n = 8). Bilateral 2.5-cm-diameter full-thickness parietal skull defects were made in all animals. In Group A, the right side was reconstructed with calcium alginate gel, osteoblasts, and nanometer bone meal composite; the left side was reconstructed with calcium alginate gel, osteoblasts, nanometer bone meal and recombinant human bone morphogenetic protein-2 composite. In Group B, the right side was kept as a simple skull defect, and the left side was reconstructed with calcium alginate gel, osteoblasts, nanometer bone meal and recombinant human bone morphogenetic protein-2 composite. MAIN OUTCOME MEASURES: Bone regeneration and histopathological changes at the site of the skull defect were observed with an optical microscope and a scanning electron microscope after surgery. The ability to form bone was measured by alizarin red S staining. In vitro cultured osteoblasts were observed for morphology. RESULTS: One month following surgery, newly formed bone trabeculae mostly covered the broken ends of the fractured bone and grew towards the defect regions. Two months after surgery, many disordered bone islands had formed. Three months after surgery, mature bone, medullary cavities and a large number of new bones were detected in the defect regions. Six months after surgery, the left defect was mostly repaired, with a high bone density compared with the right side in Groups A and B. The right defect was mostly repaired in Group A, but only a small fraction of the right defects was repaired in Group B. CONCLUSION: A composite of calcium alginate gel, osteoblasts, nanometer bone meal and recombinant human bone morphogenetic protein-2 can metabolize by itself, gradually ossify and form new bone.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第8期843-846,共4页 中国神经再生研究(英文版)
基金 the Science and Technology Foundation of Technology Department of Guangdong Province, No. 2007B031003001 the Science Research Foundation of Technology Bureau of Guangzhou City, No. 2006CBG0091
关键词 tissue engineering skull regeneration animal experiment tissue engineering skull regeneration animal experiment
  • 相关文献

参考文献2

二级参考文献29

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部