期刊文献+

FC-空间中的抽象变分不等式 被引量:1

Abstract variational inequality in FC-space
原文传递
导出
摘要 在没有任何凸性结构的有限连续拓扑空间(简称FC-空间)中讨论一类抽象变分不等式解的存在性及解的性状问题,得到了拟抽象变分不等式和隐抽象变分不等式解的存在性定理. We discuss the existence problem of solutions and character problem of solution sets for abstract variational inequality in finitely continuous topological space (in short FC - space) without any convexity assumptions. At the same time, we give the existence of solutions for quasi - variational inequality and implicit variational inequality.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第5期625-629,共5页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省教育厅科研资助项目(JB05046)
关键词 FC-空间 R-KKM映射 抽象变分不等式 FC -space R- KKM mapping abstract variational inequality
  • 相关文献

参考文献8

  • 1Gwinner J. On some fixed points and variational inequalities -a circular tour [ J ]. Nonlinear Analysis, 1981, 5 (5) : 565 -583.
  • 2Horvath C. Some results on multivalued mappings and inequality without convexity[ C ]//Nonlinear and Convex Analysis. New York: Marcel Dekker, 1987: 107.
  • 3Wu Xian, Yuan Xianzhi. Nonlinear variational inequalities and implicit variational inequality of ky fan type in H - Spaces[J]. Computers Math Applic, 1999, 38 : 1 - 8.
  • 4丁协平.局部FC-空间内的Himmelberg型不动点定理(英文)[J].四川师范大学学报(自然科学版),2005,28(2):127-130. 被引量:23
  • 5Lassonde M. On the use of KKM muhifunetions in fixed point theory and related topics[J]. J Math Anal Appl, 1983, 97:151 -201.
  • 6Park S, Kim H. Admissible classes of muhifunctions on generalized convex spaces[J]. Proc Coil Nat Sci SNU, 1993, 18:1 -21.
  • 7Tan K K. G- KKM theorem, minimax inequalities and saddle points[J]. Nonlinear Anal, 1997, 30(7) : 4 151 -4 160.
  • 8王磊,丁协平.拓扑空间上的广义R-KKM型定理及其应用[J].四川师范大学学报(自然科学版),2006,29(4):405-408. 被引量:3

二级参考文献23

  • 1汪达成.广义区间空间中参数型非紧KKM定理及其应用(英文)[J].西南师范大学学报(自然科学版),2004,29(5):734-738. 被引量:3
  • 2Park S. A unified fixed point theory of multimaps on topological vector spaces[J]. J Korean Math Soc,1998,35:803~829.
  • 3Tarafdar E. Fixed point theorems in locally H-convex uniform spaces[J]. Nonlinear Anal TMA,1997,29:971~978.
  • 4Ding X P. Abstract convexity and generalizations of Himmelberg type fixed point theorems[J]. Computers Math Applic,2001,41(3~4):497~504.
  • 5Park S. Fixed point theorems in locally G-convex spaces[J]. Nonlinear Anal TMA,2002,48:869~879.
  • 6Horvath C. Contractibility and general convexity[J]. J Math Anal Appl,1991,156:341~357.
  • 7Ding X P. Maximal element theorems in product FC-spaces and generalized games[J]. J Math Anal Appl, in press.
  • 8Park S, Kim H. Coincidence theorems for admissible multifunctions on generalized convex spaces[J]. J Math Anal Appl,1996,197:173~187.
  • 9Park S, Kim H. Foundations of the KKM theory on generalized convex spaces[J]. J Math Anal Appl,1997,209:551~571.
  • 10Ben-El-Mechaiekh H, Chebbi S, Flornzano M, et al. Abstract convexity and fixed points[J]. J Math Anal Appl,1998,222:138~150.

共引文献24

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部