摘要
采用拉氏锐化算子代替拉普拉斯算子,提出了一种基于四阶偏微分方程的图像平滑算法.该方法不容易产生二阶非线性扩散方程所造成的块效应,而且与一般四阶偏微分方程相比,收敛速度更快,同时在一定程度上避免了处理图像时常出现的不平整现象.
A new 4th order PDE algorithm for image denoising is proposed by using Laplacian - sharpening operator instead of Laplacian operator. This algorithm not only lightens the blocky effects which are easily seen in images processed by a 2nd order PDE, but also saves some time and avoids unsmoothing phenomenon compare with other algorithms based on a 4th order PDE.
出处
《福州大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第5期660-663,682,共5页
Journal of Fuzhou University(Natural Science Edition)
关键词
图像去噪
异性扩散
偏微分方程
拉氏锐化算子
image denoising
anisotropic diffusion
partial differential equations
Laplacian - sharpening operator