期刊文献+

基于拉氏锐化算子的四阶偏微分方程图像去噪算法 被引量:1

A 4th order PDE for image denoising based on Laplacian-sharpening operator
原文传递
导出
摘要 采用拉氏锐化算子代替拉普拉斯算子,提出了一种基于四阶偏微分方程的图像平滑算法.该方法不容易产生二阶非线性扩散方程所造成的块效应,而且与一般四阶偏微分方程相比,收敛速度更快,同时在一定程度上避免了处理图像时常出现的不平整现象. A new 4th order PDE algorithm for image denoising is proposed by using Laplacian - sharpening operator instead of Laplacian operator. This algorithm not only lightens the blocky effects which are easily seen in images processed by a 2nd order PDE, but also saves some time and avoids unsmoothing phenomenon compare with other algorithms based on a 4th order PDE.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第5期660-663,682,共5页 Journal of Fuzhou University(Natural Science Edition)
关键词 图像去噪 异性扩散 偏微分方程 拉氏锐化算子 image denoising anisotropic diffusion partial differential equations Laplacian - sharpening operator
  • 相关文献

参考文献7

  • 1Guillermo S. Geometric partial differential equations and image analysis[ M]. Cambridge: Cambridge University Press , 2001.
  • 2Perona P, Malik J. Scale -space and edge detection using anisotropic diffusion[ J]. IEEE Trans PAMI, 1990, 12 (7) : 629 - 639.
  • 3Tumblin J, Turk G. LCIS: a boundary hierarchy for detail -preserving contrast reduction[ C]//In Proceedings of the SIGGRAPH 1999 Annual Conference on Computer Graphics. 1999, 8(13) : 83 -90.
  • 4Guo W W. Generalized Perona - Malik equation for image processing [ J ]. IEEE Signal Processing Letters, 1999, 6 (7) : 165 - 167
  • 5You Y L, Kaveh M. Fourth -order partial differential equations for noise removal[ J ]. IEEE Trans Image Processing, 2000, 9 (10) : 1 723 -1 729.
  • 6You Y L, Xu W Y, Tannenbaum A, et al. Behavioral analysis of anisotropic diffusion in image processing[J]. Comm Pure Appl Math, 2001, 54(12) : 1 442 - 1 487.
  • 7陈飞,徐荣聪,王美清.基于耦合偏微分方程的图像去噪方法[J].计算机工程与科学,2006,28(12):66-68. 被引量:6

二级参考文献6

  • 1P Perona,J Malik.Scale-Space and Edge Detection Using Anisotropic diffusion[J].IEEE Trans on PAMI,1990,12(7):629-639.
  • 2Selim Esedoglu.An Analysis of the Perona-Malik Scheme[J].Comm Pure Appl Math,2001,54(12):1442-1487.
  • 3Francine Catte,Pierre-Louis Lions,Jean-Michel Morel,et al.Image Selective Smoothing and Edge Detection by Nonlinear Diffusion[J].SIAM Journal on Numerical Analysis,1992,29(1):182-193.
  • 4Yu-Li You,Kaveh M.Fourth-Order Partial Differential Equations for Noise Removal[J].IEEE Trans on Image Processing,2000,9(10):1723-1729.
  • 5Jack Tumblin,Greg Turk.LCIS:A Boundary Hierarchy for Detail-Preserving Contrast Reduction[J].Proc of the SIGGRAPH'99[C].1999.83-90.
  • 6Guo W Wei.Generalized Perona-Malik Equation for Image Processing[J].IEEE Signal Processing Letters,1999,6(7):165-167.

共引文献5

同被引文献5

  • 1DONOHO D L. Denoising by soft-thresholding [ J ]. IEEE Transactions on Information Theory, 1995, 41 : 613-627.
  • 2CHAN T F, OSHER S, JIANG Shen. The digital TV filter and nonlinear denoising [ J ]. IEEE Trans on Image Prossing, 2001, 10(2) : 231-241.
  • 3CHAN T, ESEDOGLU S, PARK F. A fourth order dual method for staircase reduction in texture extraction and image restoration problems [ D ]. Los Angeles: University of California Los Angeles, 2005.
  • 4BIRGE L, MASSART P. From model selection to adaptive estimation[ M ]// Festschrift for Lucien Le Cam: Research Paper in Probability and Statistics. New York: Springer- Verlag, 1997:55-85.
  • 5王桂楠,纪玉波.基于PDE和小波分解的SAR图像去噪研究[J].辽宁石油化工大学学报,2009,29(1):65-68. 被引量:6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部