期刊文献+

基于空域滤波和空间相关的钢丝绳图像分割算法研究

Research of segmentation algorithms of steel wire rope image based on the spatial filtering and the spatial correlation
原文传递
导出
摘要 在钢丝绳断丝实时检测中,由于复杂环境因素的影响和钢丝绳自身结构特点的原因,钢丝绳图像经常受不均匀光照、阴影、油泥、粉末等干扰,导致图像降质严重,给钢丝绳的分割带来困难.本文提出了一种有效、快速的分割算法:首先采用改进的空域同态滤波器对钢丝绳图像进行滤波,去除不均匀光照和削除阴影边缘,然后根据钢丝绳的几何对称性,结合边缘方向信息测度的差异和钢丝绳区域的局部特征统计,消除干扰,实现钢丝绳的分割.实验结果表明,该分割算法能够快速、完整地分割出钢丝绳图像. In the real - time inspection of broken wires in steel rope, because of the complex environment and its structure feature, the interferences such as non - uniform illumination or shadow edge or oil sludge or power would affect image quality frequently, it is a difficult task to divide the degraded image. In this paper, an effective and fast segmentation algorithm is proposed. Firstly, eliminate the non - uniform illumination and the shadow edges by adaptive homomorphic filtering on the image. Secondly, eliminate the interference according to the geometry symmetry, combined with the difference of the edge orientation information measurement and local characteristics of statistics, and image segmentation is realized. Experiment results show that this segmentation algorithms could divide the steel wire ropes rapidly and integrallty.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第5期668-672,共5页 Journal of Fuzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(60675058) 福建省自然科学基金资助项目(A0510010)
关键词 钢丝绳 图像 分割算法 阴影边缘 空域同态滤波 steel wire rope image segmentation algorithm shadow edge homomorphic filtering spatial domains
  • 相关文献

参考文献6

二级参考文献24

  • 1张利平,黄廉卿.基于局部直方图重分布的医学图像增强方法[J].光电子.激光,2004,15(7):877-880. 被引量:9
  • 2周龙.基于数学形态学的储粮害虫图像边缘检测算法研究[J].微计算机信息,2005,21(3):224-225. 被引量:31
  • 3[1]S.Adar,S.Buganim and S.R.Rotman.Analyzing point target detection algorithms[J].Electro-Optical and Infrared Systems:Technology and Applications Ⅱ,SPIE,2005,59870T(2):124-129
  • 4[2]Wei Zhang,Mingyu Cong.Algorithms for optical weak small targets detection and tracking:review[J].Proceedings of the 2003 International Conference on Neural Networks and Signal Processing,2003,1(1):643-647
  • 5[3]Uday B.Desai,Shabbir N.Small Object Detection and Tracking:Algorithm,Analysis and Application.PReMI,2005,3776(2):108-117
  • 6[5]L.Yang,J.Yang.Adaptive detection for infrared small target under sea-sky complex background[J].Electronics Letters,2004,40(17):1083-1085
  • 7[7]Roger A.Samy,Jean-Francois Bonnet.Robust estimation of texture parameters for small-target detection in clutter.Targets and Backgrounds:Characterization and Representation Ⅲ[J],Proceedings of SPIE,1997,3062:2-9
  • 8[9]Piet Schwering.infrared cloud background clutter[J].Proceedings of SPIE,1992,1687(1):311-322
  • 9[11]Alexis P.Tzannes.Detection of point targets in image sequences by hypothesis testing:a temporal test first approach[J].IEEE International Conference on Acoustics,Speech,and Signal Processing,1999,6:3377-3380
  • 10张远鹏,计算机图象处理技术基础

共引文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部