期刊文献+

幂律流体延伸表面逆来流边界层特性分析与数值模拟

Analysis and numerical simulation of boundary layer separation flow on the stretching surface of power law fluids
原文传递
导出
摘要 首先利用量级分析理论对幂律流体延伸表面边界层流动进行分析,得到边界层厚度的量级和影响因素;引入量纲为1变量,将动量边界层的控制方程转化为量纲为1的控制方程组.数值求解了具有不同幂律指数n的流体在平板逆来流且平板运动参数ζ不同的情况下的层流边界层流场,分析了幂律指数n和平板运动参数ζ对动量边界层厚度、量纲为1速度分布和量纲为1剪切力分布的影响规律.结果表明,速度边界层的分布不仅和平板运动参数有关,而且和幂律指数有关. A theoretical analysis of boundary layer flow on the continuous moving surface of power law fluids was carried out based on the theory of dimensional analysis of the fluid dynamics. The magnitude and the influencing factor of the laminar boundary layer thickness were obtained. The governing equations of mass and momentum were transformed into the dimensionless form by introduc- ing dimensionless variables. The flow fields of different power-law index fluids with different velocity ratio parameters were presented numerically. The characteristics of the flow and the influence of power-law index and velocity ratio parameter on the flow were analyzed. The results show that the dimensionless velocity and shear stress depend not only on the velocity ratio parameter of the plate, but also on the power law index.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2008年第10期1174-1178,共5页 Journal of University of Science and Technology Beijing
基金 国家自然科学基金资助项目(No.50476083)
关键词 幂律流体 速度边界层 连续运动平板 数值计算 power law fluid velocity boundary layer stretching surface numerical solutions
  • 相关文献

参考文献3

二级参考文献10

  • 1Bernfeld S R,Lakshmikantham V.An introduction to noalinear boundary value problems. . 1974
  • 2Callegari A J,Friebman M B.An analytical solutions of a noalinear singular boundary value problem inthe theory of viscous fluids. Journal of Mathematical Analysis and Applications . 1968
  • 3Nachman A,Callegari A J.A noalinear singular boundary value problem in the theory of pseudoplasticfluids. SIAM Journal on Applied Mathematics . 1980
  • 4Soewono E,Vajravelu K,Mohapatra R N.Existence and nonuniqueness of solutious of a singular nonlinearboundary 1ayer problem. Journal of Mathematical Analysis and Applications . 1991
  • 5Hussaini M Y,Lckin W D.Existence and nonuniqueness of similarity solutions of boundary layer problem. The Quarterly Journal of Mechanics and Applied MaThematics . 1986
  • 6Hussaini M Y,Lakin W D,Nachman A.on similarity solutions of a boundary layer problem with anupstream moving wall. SIAM Journal on Applied Mathematics . 1987
  • 7Coddington,E. A.,Levinson,N. Theory of ordinary differential equations . 1955
  • 8Hartman P.Ordinary Di?erential Equations. . 1982
  • 9Liancun ZHENG,Xinxin ZHANG,Jicheng HE.Suitable Heat Transfer Model for Self-Similar Laminar Boundary Layer in Power Law Fluids[J].Journal of Thermal Science,2004,13(2):150-154. 被引量:5
  • 10ZHENGLian-Cun,ZHANGXin-Xin,HEJi-Cheng.Drag Force of Non—newtonian Fluid on a Continuous Moving Surface with Strong Suction/Blowing[J].Chinese Physics Letters,2003,20(6):858-861. 被引量:6

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部