期刊文献+

一种改进的启发式离散化算法及应用 被引量:1

An Improved Heuristic Algorithm for Discretization and Its Application
下载PDF
导出
摘要 Nguyen S.H提出的布尔逻辑和粗糙集理论相结合的离散化算法是粗糙集理论中的离散化算法在思想上的重大突破。通过定义分界点来区分Nguyen S.H离散化算法中定义的断点对决策系统的分辨关系是否有贡献,并仅取分界点集作为初始断点集,使得初始断点数目较大幅度地降低,提出了一种改进的启发式离散化算法并应用于一个实际的决策系统的连续属性离散化。应用实例表明改进算法较大程度地减小了算法空间复杂性和时间复杂性,具有正确性和实用性。 The discretization algorithm of rough set and boolean reasoning approach presented by Nguyen S. H is a momentous breakthrough of thinking in the diseretization algorithm of rough set theory. By defining dividing point, we can differentiate each of the breaking points defined by Nguyen S. H discretization algorithm whether has contribution to the differentiation relation of the decision system. And by choosing the dividing point set as the original breaking point set only, we can decrease the number of original breaking point to a biggish degree. This paper introduces an improved heuristic algorithm for discretization and applies it to discretization of continuous attributes of an actual decision system. The application case indicates that the improved algorithm can reduce preferably the space complexity and time complexity of the discretization and has the correctness and practicability.
作者 彭佳文
出处 《计算机与现代化》 2008年第9期51-53,57,共4页 Computer and Modernization
基金 湖南省科技厅科技计划项目(05JT1013)
关键词 粗糙集 离散化 决策系统 分界点 rough set diseretization decision system dividing point
  • 相关文献

参考文献7

二级参考文献25

  • 1苗夺谦.Rough Set理论及其在机器学习中的应用研究(博士学位论文)[M].北京:中国科学院自动化研究所,1997..
  • 2Wang Jue,J Comput Sci Technol,1998年,13卷,2期,189页
  • 3苗夺谦,博士论文,1997年
  • 4Hu X H,Int J Computational Intelligence,1995年,11卷,2期,323页
  • 5Tsumoto,Shusaku. Rough Set Methods and Applications[M].New York:Physica_Verlag, 2000.
  • 6Orlowska, Ewa. Incomplete Information: Rough Set Analysis[M].New York: Physica_Verlag, 1998.
  • 7Francis E H Taya,Lixiang Shen. Fault diagnosis based on Rough Set Theory[J].Engineering Applications of Artificial Iutelligence,2003;16:39-43.
  • 8F E H Tay,L Shen.Economic and ?nancial prediction using rough sets model[J].European Journal of Operational Research,2002; 141:641-659.
  • 9Slowinski R.RoughClassifica tion of HSV Patients. Intelligent Decision Support[M].Kluwer:Roman Slowinski, 1992:77-944.
  • 10Hu X H,Cercone N.Learning in relational databases:A rough set approach[J].Inter J of Computational Intelli-gence, 1995; 11 (2) :323-3385.

共引文献179

同被引文献11

  • 1COOPER G, HERSKOVITS E. A Bayesian method for the induction of probabilistic networks from data [ J]. Machine Learning, 1992, 9 (4): 309 -347.
  • 2HECKERMAN D, GEIGER D, CHICKERING D. Learning Bayesian networks: The combination of knowledge and statistical data [J]. Machine Learning, 1995, 20(3): 197-243.
  • 3GEIGER D, HECKERMAN D. Learning Gaussian networks [ C]// Proceedings of the lOth Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: [ s. n. ], 1994:235 -243.
  • 4FAYYAD U, IRANI K. Multi-interval discretization of continuousvalued attributes for classification learning [ C ]// IJCAI'93: Proceedings of 1993 International Joint Conference on Artificial Intelligence. San Fransisco, CA: Morgan Kaufmann, 1993:1022 -1027.
  • 5PFAHRINGER B. Compression-based discretization of continuous variables [ C]//Proceedings of the 12th International Conference on Machine Learning. San Fransisco, CA: Morgan Kaufmann, 1995: 456 - 463.
  • 6FRIEDMAN N, GOLDSZMIDT M. Discretization of continuous attributes while learning Bayesian networks [ C]//ISML'96: Proceedings of the 13th International Conference on Machine Learning. 1996:157 - 165.
  • 7NGUYEN H S, SKOWRON A. Quantization of real values attributes rough sets and Boolean reasoning approaches [ C]// Proceedings of the 2nd Joint Annual Conference on Information Science. Wrights- ville Beach, NC: [s. n.], 1995:34-37.
  • 8NGUYEN H S. Discretization problem for rough sets methods [ C]// RSCTC'98: Proceedings of the 1st International Conference on Rough Sets and Current Trends in Computing. Warsaw, Poland: [ s. n.]. 1998:545 -552.
  • 9潘巍,李晋川,王阳生,杨宏戟.基于决策的剥离式连续属性离散化算法[J].计算机科学,2007,34(8):208-210. 被引量:5
  • 10王飞,刘大有,薛万欣.基于遗传算法的Bayesian网中连续变量离散化的研究[J].计算机学报,2002,25(8):794-800. 被引量:14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部