期刊文献+

显现模式:一种基因分类的工具 被引量:1

Emerging Patterns: A Tool of Gene Classification
下载PDF
导出
摘要 基因分类因其应用意义重大,成为近年来研究的热点。显现模式以具有生物意义的隐性基因模式为基础实现对癌症的高识别率,应用前景十分广阔。本文介绍了显现模式的理论体系,并通过白血病数据集分类实验说明了该工具的可行性和有效性。 Gene classification becomes hotspot of research because of its significance in application. Emerging Patterns (EPs) based on hidden gene patterns which have biological meanings can identify cancer with high recognition rate, so it has a bright future for application. The theory of EPs is introduced and experiments are taken on the human acute leukemia dataset. Experimental results show that EPs is feasible and effective.
出处 《计算机与现代化》 2008年第9期134-136,共3页 Computer and Modernization
关键词 基因分类 微阵列 显现模式 gene classification microarray emerging patterns
  • 相关文献

参考文献8

  • 1Quackenbush J. Microarray analysis and tumor classification[J]. The New England Journal of Medicine, 2006, 354 ( 23 ) :2463-2472.
  • 2Li J, Liu H, Downing J R, et al. Simple rules underIying gene expression profiles of more than six subtypes of acute lymphoblastic leukemia (ALL) patients [ J ]. Bioinformatics,2003,19(1) :71-78.
  • 3Dong G, Li J. Efficient mining of emerging patterns: Discovering trends and differences [ C ]// Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining. San Diego, USA ,1999:43-52.
  • 4Ramamohanarao K, Bailey J. Emerging patterns: Mining and applications [ C ]// Proceedings of the International Conference on Intelligent Sensing and Information Processing. Chennai, India,2004:409-414.
  • 5Li J, Wong L. Emerging patterns and gene expression data [ J ]. Genome Informatics ,2001,12:3-13.
  • 6Dong G, Li J. Mining border descriptions of emerging patterns from dataset pairs [ J ]. Knowledge and Information Systems,2005,8 ( 2 ) : 178-202.
  • 7Tan A H, Pan H. Predictive neural networks for gene expression data analysis [ J ]. Neural Networks, 2005,18 (3) : 297 -306.
  • 8Furey T S, Cristianini N, Duffy N, et al.Support vector machine classification and validation of cancer tissue sampies using microarray expression data [ J ]. Bioinformatics, 2000,16(10) :906-914.

同被引文献6

  • 1李颖新,刘全金,阮晓钢.急性白血病的基因表达谱分析与亚型分类特征的鉴别[J].中国生物医学工程学报,2005,24(2):240-244. 被引量:19
  • 2Golub T R. Moleular classification of cancer: class discovery and class prediction by gene expression moni- toring[J]. Science, 1999,286:531-537.
  • 3Padil P, Novovicova J, Kittler J. Floating search method in feature selection[J]. Pattern Recognition Letters, 1994,15(11):1119-1125.
  • 4Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machine[J]. Machine Leaving, 2000,46(13):389-422.
  • 5Huang Jianping, Fang Hong, Fan Xiaohui. Decision forest for classification of gene expression[J]. Computer Data in Biology and Medicine, 2010,40(8):698-704.
  • 6祖培福.基于主成分分析下候选基因关联检验的数学模型[J].数学的实践与认识,2010,40(14):45-51. 被引量:2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部