摘要
利用定义出n阶的Kantorovich—Sheffer算子.研究它的有关性质。
Let h(t)=and exp(xh(t))=For f ∈ Lp[0,1],theasscociated Kantorovich-Sheffer operator of degree n is defined by f(u)dubnk (x), where pn=.The necessary andsufficient condition insuring the uniform convergence of f to f is given and, when h is apolymomial, an upper bound for the error is given.
出处
《宝鸡文理学院学报(自然科学版)》
CAS
1997年第4期33-36,共4页
Journal of Baoji University of Arts and Sciences(Natural Science Edition)
关键词
K-S算子
逼近
连续模
B-S算子
Bernstein-Sheffer Operator Festing Set Continuity modulus