期刊文献+

射流间距对高温空气燃烧影响的数值研究 被引量:5

Numerical Simulation of High Temperature Air Combustion for Different Distance between the Fuel and Air Jet
下载PDF
导出
摘要 以高温空气燃烧技术为应用背景,对多股射流燃烧器的燃烧特性进行了数值模拟,讨论了燃料与空气射流喷口间距对燃烧特性的影响。采用标准的双方程模型计算流场,采用函数的PDF燃烧模型计算气体燃料的燃烧,采用离散坐标法模拟辐射换热过程。NOX模型为热力型NOX,炉膛尺寸为800mm×800mm×1400mm,燃料喷口为圆形,直径为10mm,位于中心。空气喷口设计为5个等面积的圆形置于燃气喷口周围。计算结果表明,由于射流之间的相互作用,在炉膛后面存在回流区。烟气的回流一方面加强了燃料和空气的混合,使温度分布更为均匀,同时改变了炉膛空间内的燃料和氧的浓度分布,从而影响燃烧强度和NOX的局部生成。当燃料射流喷口与空气射流喷口的间距增大时,能有效地延缓燃料和空气的混合,烟气回流将会增加燃烧室内气体的混合程度,降低燃烧室内局部氧浓度,有利于扩大低氧区域,扩大燃烧区域,并且使炉膛温度变得均匀,减少局部高温区,降低NOX的生成.I=2.5时的NOX排放浓度为45×10-6。 A numerical simulation was carried out on the High Temperature Air Combustion in an industrial furnace with a multi-jet burner. The furnace was a rectangular chamber of 800 mm× 800 mm × 1 400 mm. A circular fuel jet of a diameter of 10mm is at the center of the wall. 5 circular air jets equably distributed around the fuel jet with different straddle angles. The effect of the distance between the fuel and air jets on the combustion characteristics was discussed. APDF (Probability Density Function) combustion model based on a b function was selected to simulate the gas combustion combined with the standard k-e model. The radiation was simulated by a Discrete Ordinates method. The NOx emission was simulated by thermal NOx model. The results showed that there was the recirculation zone in the furnace due to the inter- action of the jets. The recirculation of the flue-gas changed the local distribution of the fuel and oxygen in the furnace and then influenced the local NOx generation. When the distance between the air and fuel jets increased, the mixing of the fuel and air could be effectively delayed and an obvious recirculation zone appeared between the air jets and fuel jet that reduced the local oxygen concentration. More fuel would be burnt in the low oxygen region and combustion zone and the flame volume were both increased which made the temperature distribution became more equable and local high temperature was suppressed. When the dimensionless distance between the air and fuel jets was 2.5, a minimum NOx emission of 45 × 10^-6 was achieved at 15% O2.
出处 《工业加热》 CAS 2008年第5期23-26,共4页 Industrial Heating
关键词 工业炉 高温空气燃烧 多股射流燃烧器 数值模拟 industrial furnace high temperature air combustion multi-jet burner numerical simulation
  • 相关文献

参考文献16

  • 1NISHIMURA M, SUZUKI T, NAKANISH1 R, et al. Low NOx Combustion under High Preheated Air Temperature Condition in an Industrial Furnace [J]. Energy Convers Mgmt, 1997,38 (10-13): 1353-1363.
  • 2SUZUKAWA Y, SUGUYAMA S, HINO Y, et al. Heat Transfer Improvement and NOx Reduction by highly Preheated Air Combustion [J]. Energy Convers Mgmt, 1997,38 ( 10-13 ) : 1061 - 1071.
  • 3YUTAKA SUZUKAWA, ISAO MORI, YUKIO ISHIGUCHI, et al. Direct-fired Regenerative Burner [J]. NKK Technical Review, 1999,80: 15-21.
  • 4CHOI GYUNG-M1N, MASASHI KATSUKI, Advanced Low NOx Combustion Using Highly Preheated Air [J]. Energy Convers Mgmt, 2001,42: 639-652.
  • 5ORSINO S, WEBER R, BOLLETTINI U. Numerical Simulation of Combustion of Natural Gas with High-temperature Air [J]. Combustion Science and Technology, 2002,168: 1-34.
  • 6ISHII T, ZHANG C, SUGIYAMA S. Numerical Simulations of Highly Preheated Air Combustion in an Industrial Furnace [J]. J. Energy Resource Technology, 1998,120: 276-284.
  • 7YANG WEIHONG, BLASIAK WLODZIMIERZ, Mathematical Modelling of NOx Emissions from High-temperature Air Combustion with Nitrous Oxide Mechanism [J]. Fuel Processing Technology, 2005,86 (9): 943-957.
  • 8YANG WEIHONG, BLASIAK WLODZIMIERZ. Combustion Performance and Numerical Simulation of a High-temperature Air-LPG Flame on a Regenerative Burner [J]. Scandinavian Journal of Metallurgy, 2004,33 (2): 113-120.
  • 9YANG WEIHONG, BLASIAK WLODZIMIERZ. Numerical Simulation of Properties ofa LPG Flame with High-temperature Air [J]. International Journal of Thermal Sciences, 2005,44: 973-985.
  • 10MORTBERG M, BLASIAK W, GUPTA A K. Combustion of Normal and Low Calorific Fuels in High Temperature and Oxygen Deficient Environment [J]. Combustion Science and Technology, 2006,178 (7): 1345-1372.

二级参考文献19

  • 1陶文铨.数值传热学[M].西安:西安交通大学出版社,1998..
  • 2祁海鹰 徐旭常.中国开发应用高温空气燃烧新技术的前景.高温空气燃烧新技术国际研讨会论文集[M].北京,1999.192-205.
  • 3[1]Ryugo Fuse, Hideaki Kobayashi, Yiguang Ju, et al. NOx Emission from High-Temperature Air/Methane Counterflow Diffusion Flame. Int. J. Therm. Sci., 2001, 41:693-698
  • 4栗原孝好,仲町一郎等.FDIリジ工ネレィティプバ-ナの开发[J].工业加热,1996,33(5):39-47.
  • 5[3]T Ishii, C Zhang, S Sugiyama. Numerical Simulations of Highly Preheated Air Combustion in an Industrial Furnace. Journal of Energy Resources Technology, Transactions of ASME, 1998, 120(4): 276-284
  • 6[4]Jianwei Yuan, Ichiro Naruse. Effects of Air Dilution on Highly Preheated Air Combustion in a Regenerative Furnace. Energy & Fuels, 1999. 13(1): 99-104
  • 7[5]A Milani, A Saponaro. Diluted Combustion Technologies.IFRF Combustion Journal, article No. 200101, 2001
  • 8香月正司,水谷幸夫,安田俊彦,等.乱流予混合火炎にぉける乱れと混合(第2报,火炎微细构造とその混合过程への影响)[J].日本机械学会学报(B卷), 1989,55(514),1729-1736.(Masashi K, Yukio M, Toshihiko Y,et al. Turbulence and mixing in turbulent premixed flames(Part2, fine flame structure and its influence on mixing processes)[J]. Transaction of the Japan Society of Mechanical Engineers(B), 1989,55(514):1729-1736.
  • 9香月正司,水谷幸夫,安田俊彦,等.乱流予混合火炎にぉける乱れと混合(第3报,乱流燃烧反广心モテル)[J].In:日本机械学会学报(B卷), 1992,58(551):2261-2267.(Masashi K, Yukio M, Toshihiko Y, et al. Turbulence and mixing in turbulent premixed flames(Part3, turbulent combustion model)[J]. Transaction of the Japan Society of Mechanical Engineers(B), 1988,58(551):2261-2267.
  • 10香月正司,水谷幸夫.乱流予混合火炎の燃烧反广心モテル)[J].日本机械学会学报(B卷), 1988,54(506):2911-2916.(Masashi K, Yukio M. Modeling of the Reaction Rate in Turbulent Premixed Flames[J]. Transaction of the Japan Society of Mechanical Engineers(B), 1988,54(506):2911-2916.)

共引文献83

同被引文献64

  • 1陈冠军,王连尉,胡雄光,钱凯,刘学民.首钢中厚板厂蓄热式燃烧技术的应用研究[J].钢铁,2005,40(12):76-80. 被引量:9
  • 2杨占春,刘浏,陈蛾,张江铃,李菁,刘昆,杨睿.同轴烧嘴炉内混合燃烧过程的数值模拟[J].钢铁研究学报,2006,18(9):21-25. 被引量:4
  • 3朱彤,朱尚龙,曹甄俊,李芃,冯良.高温空气燃烧NO_x排放特性的试验研究[J].工程热物理学报,2006,27(5):894-896. 被引量:18
  • 4杨占春,陈峨,村上弘二,张泊汀,梁严,高峰.高温空气燃烧技术中换向时间对炉内工况的影响[J].钢铁研究学报,2007,19(6):48-51. 被引量:3
  • 5N1SHIMURA M,SUZUKI T,NAKANISHI R,et al.Low NOx Combustion Under High Preheated Air Temperature Condition in an Industrial Furnace[J].Energy Convers Mgmt,1997,38 (10/11/12/13):1353-1363.
  • 6SUZUKAWA YUTAKA,MORI ISTO,ISHIGUCHI YUKIO,et al.Direct-fired Regenerative Burner[J].NKK Technical Review,1999,80:15-21.
  • 7SUZUKAWA Y SUGUYAMA S HINO Y,et al.Heat Transfer Improvement and NOX Reduction by Highly Preheated Air Combustion[J].Energy Convers Mgmt,1997,38 (10/11/12/13):1061-1071.
  • 8TAKASHI ISHIMOTO,HITOSHI TSUZUK.Application of High Performance Industrial Furnace to Heat Treatment Technology and Its Possibilities[C] //Proceeding of The 1999 International Joint Power Generation Conference and ICOPE' 99.New York:ASME,1999:467-474.
  • 9CHOI GYUNG-MIN,KATSUKI MASASHI.Advanced Low NOx Combustion using Highly Preheated Air[J].Energy Convers Mgrnt,2001,42:639-652.
  • 10DORMIRE JOHN C.Benefits of Applying Regenerative Burner Technology to Continuous Reheat Furnace[J].AISE Steel Technology,2000,77 (4):55-57.

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部