期刊文献+

烟气轮机动叶片断裂原因分析 被引量:7

Failure Analysis of Gas Turbine Rotor Blades
下载PDF
导出
摘要 本文分析了某烟气轮机动叶片失效原因。通过使用金相、扫描电镜等手段,对叶片进行裂纹、断口、组织及成分分析。结果表明,该烟气轮机动叶片的断裂性质为疲劳断裂,断裂叶片榫头第三齿(即断口部位)处的接触不均匀造成的严重磨损、接触应力明显增大以及榫齿接触表面存在一定程度的腐蚀损伤是造成叶片榫头发生疲劳开裂的主要原因;断口表面腐蚀产物包含烟气中特有的杂质元素,如Al、Si、Ca、K、S、O、Na等元素。研究发现,晶界碳化物呈现链状分布,已经发生了晶界弱化现象。叶片裂纹源表面的亚表面处存在的夹杂物和合金的晶界弱化也促进了叶片的开裂。研究结果对于叶片的故障分析及预防具有重要的意义。 In this paper, the failure mechanism of the gas turbine rotor blades made of Waspaloy superalloy was analyzed. Crack origin detection, fracture surface and microstructure examination and chemical analysis were carried out by means of optical microscopy, scanning electron microscopy and EDS. The results indicate that the fracture mode of the blades is fatigue fracture. The fatigue cracking of the blade rabbets was mainly caused by heavy wear and stress concentration of the contact face resuhing from non-uniform contact. Corrosion damage of the contact surface was another main cause for the fracture. The corrosion products on the fracture surface contained some elements peculiar to the gas, such as Al, Si, Ca, K, S, O, Na, and so on. In addition, it was found that grain-boundary carbides spread out like chains, which resulted in grain-boundary weakness. Subsurface inclusions near the crack origin and the grain-boundary weakness also promoted the fracture of the blades. These findings are meaningful to the failure analysis and fracture prevention of gas turbine Blades.
出处 《失效分析与预防》 2008年第4期23-27,共5页 Failure Analysis and Prevention
关键词 Waspaloy合金 失效分析 应力集中 动叶片 Waspaloy superalloy failure analysis stress concentration rotor blade
  • 相关文献

参考文献9

  • 1方文.YL型烟气轮机的开发和应用[J].石油化工设备技术,2000,21(2):30-33. 被引量:14
  • 2董建新,丁利生,王振德.烟气轮机涡轮盘和叶片用WASPALOY合金研究[J].中国材料科技与设备,2006,3(2):68-73. 被引量:18
  • 3洪成淼 董建新 张麦仓 等.国产超大型烟气轮机动叶片组织特征[J].北京科技大学学报,2006,28(1):541-541.
  • 4[4]N.Vardar,A.Ekerim.Failure analysis of gas turbine blades in a thermal powder plant[J].Engineering Failure Analysis,2007,14:743-749.
  • 5[5]P.J.Golden,J.R.Calcaterra.A fracture mechanics life prediction methodology applied to dovetail fretting[J].Tribology International,2006,39(10):1172-1180.
  • 6[6]M.Veigh,P.Alison.Analysis of fretting fatigue in aircraft structure:Stresses,stress intensity factors and life predictions[D].Indiana:Puridue University,1999.1-3.
  • 7[7]M.R.Khajavi,M.H.Shariat.Failure of first stage gas turbine blades[J].Engineering Failure Analysis,2004,1:589-597.
  • 8郝传龙,董建新,张麦仓,洪成淼.某烟气轮机动叶片榫齿断裂原因分析[J].失效分析与预防,2006,1(4):34-37. 被引量:8
  • 9[10]E.Poursaeidi,M.Salavatian.Failure analysis of generator rotor fan blades[J].Engineering Failure Analysis,2007,14:851-860.

二级参考文献8

  • 1[1]T.J.Carter.Common failures in gas turbine blades[J].Engineering Failure Analysis,2005,12(2):237-247.
  • 2[2]D.J.Deye,W.H.Couts.Super waspaloy microstructure and properties[J].ASTM Special Technical Publication,1979,(672):601-615.
  • 3[3]M.J.Donachie,A.A.Pinkowish.Effect of hot work on the properties of waspaloy[J].Metal Transaction,1970,1 (9):2623-2630.
  • 4[4]R.F.Decker.Symposium on Steel Strengthening Mechanisms[C],Zurich,1969,C climax molybdenum Co.,Greenwich,COM.,1970.147-170.
  • 5[6]E.W.Ross,C.T.Sims.Nickel-Base alloys[A],C.T.Sims,N.S.Stoloff and W.C.Hagel,ed.,Superalloy Ⅱ[C],New York:John Willy & Sons,1987.97-133.
  • 6[7]P.J.Golden,J.R.Calcaterra.A fracture mechanics life prediction methodology applied to dovetail fretting[J].Tribology International,2006,39(10):1172-1180.
  • 7[8]M.Veigh,P.Alison.Analysis of fretting fatigue in aircraft structures:Stresses,stress intensity factors,and life predictions[D].Indiana:Purdue University.1999.1-3.
  • 8[9]Z.Zhang,Q.P.Zhong.Fatigue stress range judged by the fractograph of blade[J].Aerospace Material and Technology,2000,30(Supp.):45-48.

共引文献37

同被引文献63

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部