摘要
为提高硬质合金压力烧结炉的能量利用系数,挖掘生产潜力,采用基于传统的热平衡计算、神经网络、自适应变尺度混沌优化算法等相结合的集成建模方法研制一套操作优化智能决策支持系统。该系统具有自学习和自适应的特点,并已成功地应用于硬质合金压力烧结炉中。应用结果表明,用该系统优化出的操作参数指导生产,各项生产指标显著提高,硬质合金压力烧结炉年产量提高5.5%,系统终点预报误报率小于4.5%,每年实际降低用电成本约50万元。
In order to enhance energy using coefficient of cemented carbide pressure sintering furnace and make it give out its potential, an operation optimum and intelligent decision support system was developed based on traditional heat equation calculation, artificial neural network and self adaptive mutative scale chaos optimization algorithm. The system has characteristics of self-study and self adaptation. The system was successfully used in the cemented carbide pressure sintering furnace. The factual result reveals that the yearly output of the cemented carbide pressure sintering furnace enhances 5.5%, error rate of endpoint prediction of IDSS is less than 4.5% and the gross of electricity energy in a year reduces 500 000 yuan.
出处
《中南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2008年第5期1017-1022,共6页
Journal of Central South University:Science and Technology
基金
湖南省自然科学基金资助项目(06JJ50103)
关键词
硬质合金压力烧结炉
智能决策支持系统
神经网络
混沌优化算法
cemented carbide pressure sintering furnace
intelligent decision support system
neural network
chaos optimization algorithm