期刊文献+

火灾下钢梁瞬态温度分布数值模拟及实验 被引量:3

Numerical simulations and experimental studies on transient temperature distribution of steel beams in fire
下载PDF
导出
摘要 结合真实火灾热环境的特点,建立火灾下钢梁构件的传热数学模型;利用有限容积法与全隐式差分格式对钢梁构件的温度响应行为进行数值模拟研究,并利用ISO9705标准火灾实验系统,在3.6 m×2.4 m×2.4 m(长×宽×高)实验间内对钢梁构件在壁面火(燃料是壁面厚度为15 mm的木工板)与油盘火(燃料是纯度为95%的乙醇)热环境作用下的温度响应过程进行实验验证。研究结果表明:自然火灾中,烟气含有大量炭颗粒,热烟气的辐射能力大大增强;钢梁构件的温升及温度分布主要由其表面的热烟气温度决定;火灾对钢构件的辐射传热项修正系数γ可取1.0;数值模拟结果与实验结果较吻合,所采用的数值模拟方法可用于钢构件的温度响应预测及力学行为的进一步研究。 A numerical heat transfer model for steel beams in fire was established according to the characteristics of the real fire environment. The finite-volume method and full-implicit difference scheme were adopted to perform the numerical simulation of the temperature response behaviors of steel beams, and the ISO 9705 room/corner rig with an experimental room of 3.6 m×2.4 m× 2.4 m was used to conduct experimental validations in the temperature response process under the thermal conditions, which are induced by wall surface fire with the fuel of 15 mm laminated wood boards placed on the inner wails and oil pool fire with the fuel of 95% ethanol in pan. The results show that the radiant capability of the hot smoke is greatly enhanced since there are lots of char particles contained in the hot smoke of a natural fire, which indicates the temperature rises and distributions of the steel beams are mainly determined by the temperature of the hot smoke layer near the surface. Under this condition, the correction coefficient γ for the heat transfer term from real fire to steel members is taken as 1.0. The numerical and experimental results agree well, which can provide further support for the prediction of the temperature response and mechanical behaviors of steel beams.
作者 陈长坤
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第5期1094-1099,共6页 Journal of Central South University:Science and Technology
基金 国家自然科学基金资助项目(50706059) 河南省煤矿瓦斯与火灾防治重点实验室开放基金资助项目(HKLGF200503)
关键词 钢梁 火灾 数值模拟 温度响应 steel beams fire numerical simulation temperature response
  • 相关文献

参考文献17

  • 1Quintiere J G,Di Marzom M, Becker R. A suggested cause of the fire-induced collapse of the world trade towers[J]. Fire Safety Journal, 2002, 37:707-716.
  • 2李国强,蒋首超,林桂样.钢结构抗火计算及设计[M].北京:中国建筑工业出版社.1999.
  • 3Eurocode3 design of steel structures, Part 1. 2: General rules, structural fire design[S].
  • 4丁发兴,余志武.Behavior of concrete and concrete-filled circular steel tubular stub columns at constant high temperatures[J].Journal of Central South University of Technology,2006,13(6):726-732. 被引量:8
  • 5史聪灵,霍然,李元洲,彭伟,姚斌.火灾环境下钢构件升温过程的模型研究[J].中国工程科学,2003,5(12):66-72. 被引量:9
  • 6Wald F, Chladna M, Moore D B, et al. Temperature distribution in a full-scale steel framed building subject to a natural fire[J]. Steel and Composite Structures, 2006, 6(2): 159-182.
  • 7Wald F, da Silva L S, Moore D B, et al. Experimental behavior of a steel structure under natural fire[J]. Fire Safety Journal, 2006, 41 (7): 509-522.
  • 8陈长坤,姚斌,杨昀,蔡昕,张和平,万玉田.墙角火灾环境下钢构件温度分布及响应行为的实验研究[J].中国工程科学,2005,7(9):70-75. 被引量:6
  • 9Kay T R, Kirby B R, Preston R R. Calculation of the heating rate of an unprotected steel member in a standard fire resistance test[J]. Fire Safety Journal, 1996, 26: 327-350.
  • 10Gardner L, Ng K T. Temperature development in structural stainless steel sections exposed to fire[J]. Fire Safety Journal, 2006, 41(3): 185-203.

二级参考文献29

  • 1蒋首超,李国强,楼国彪,孙元杰.钢-混凝土组合楼盖抗火性能的数值分析方法[J].建筑结构学报,2004,25(3):38-44. 被引量:21
  • 2李卫,过镇海.高温下砼的强度和变形性能试验研究[J].建筑结构学报,1993,14(1):8-16. 被引量:251
  • 3丁发兴,余志武.钢管混凝土短柱力学性能研究—理论分析[J].工程力学,2005,22(1):175-181. 被引量:46
  • 4陶文栓.数值传热学[M].西安:西安交通大学出版社,1988..
  • 5杨世铭.传热学(第2版)[M].北京:高等教育出版社,1987,10..
  • 6TONG M, THAM LG, AU F T K, et al. Numerical Modeling for Temperature Distribution in Steel Bridges[J]. Computers and Structures, 2001, 79:583-593.
  • 7BRANCO F A, FERNANDO A, MENDES P A, et al. Thermal Actions for Concrete Bridge Design[J]. Journal of Structural Engineering, 1993, 119(8):2313-2331.
  • 8KOZLOV A G. Analytical Modelling of Steady-state Temperature Distribution in Thermal Microsensors Using Fourier Method, Part 2: Practical Application[J]. Sensors and Actuators, 2002,101(3):299-310.
  • 9MATSUNO M, ADACHI S, NAKAYAMA M, et al. Bridge Circuit for Temperature Drift Cancellation[J]. IEEE Transactions on Instrumentation and Measurement, 1993,42(4):870-872.
  • 10MILLER G L, DAFNA T, TENG S H, et al. On the Radius-Edge Condition in the Control Volume Method[J]. SIAM Journal on Numerical Analysis, 1999, 36:1690-1708.

共引文献34

同被引文献28

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部