期刊文献+

一类三种群离散捕食系统的持久性 被引量:5

Permanence for a Class of Three-Species Discrete Time Predator-Prey System
下载PDF
导出
摘要 利用差分比较原理讨论一类基于比率且具有Machaelis-Menten型功能性反应的三种群离散捕食系统持久性,得到了该系统持久生存的充分条件。补充了一些学者的工作。 By using the comparison theorem of difference inequality, a set of easily verifiable sufficient conditions are derived for the permanence of Three-Species Discrete Time Predator-Prey System. Our results supplement some known results.
作者 吴润莘
出处 《莆田学院学报》 2008年第5期17-20,共4页 Journal of putian University
基金 福建工程学院科研发展基金资助项目(GY-Z0779)
关键词 基于比率 离散 捕食系统 持久性 ratio-dependent discrete Predator-Prey system permanence
  • 相关文献

参考文献2

二级参考文献3

共引文献2

同被引文献26

  • 1王琳琳.自治HollingⅢ类功能性反应的捕食-食饵系统的定性分析[J].西北师范大学学报(自然科学版),2005,41(1):1-6. 被引量:10
  • 2吴润莘,李林.具时滞的三种群离散捕食系统的正周期解的存在性[J].福建工程学院学报,2007,5(3):291-296. 被引量:2
  • 3Yang Xitao.Uniform persistence and periodic solutions for a discrete predator-prey system with delays[J].J.Math.Anal.Appl.,2006,316:161-177.
  • 4Hai-Feng Huo,Wan-Tong Li.Permanence and global stability for nonautonomous discrete model of Plankton Allelopathy[J].Appl.Math.Lett.,2004,17:1007-1013.
  • 5Zhou Z,Zou X.Stable periodic solutions in a discrete periodic logistic equation[J].Appl.Math.Lett.,2003,16(2):165-171.
  • 6Zhong Li,Fengde Chen.Extinction in two dimensional discrete Lotka-Volterra competitive system with the effect of toxic substances[J].Dynam.Cont.Discrete Impul.Sys.,2008,15:165-178.
  • 7Yang Xitao. Uniform persistence and periodic solutions for a discrete predator-prey system with delays [ J]. J Math Anal Appl, 2006, 316:161 - 177.
  • 8Huo Haifeng, Li Wantong. Permanence and global sta- bility for nonautonomous discrete model of plankton al- lelopathy[ J]. Appl Math Lett, 2004, 17 : 1007 - 1013.
  • 9Zhou Z, Zou X. Stable periodic solutions in a discrete periodic logistic equation [ J]. Appl Math Lett, 2003, 16(2) :165 - 171.
  • 10R Mahhuba.On the nonautonomous Lotka-Volterracompetition system with diffusion. Journal of XinjiangUniversity . 1996

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部