期刊文献+

羊草(Leymus chinensis)叶片光合参数对干旱与复水的响应机理与模拟 被引量:23

Modeling the responses of leaf photosynthetic parameters of Leymus chinensis to drought and rewatering
下载PDF
导出
摘要 利用典型草原优势植物羊草(Leymus chinensis)对不同水分胁迫与复水响应的植物光合生理生态模拟实验与野外观测资料,分析研究了羊草叶片光合参数Kcmax(Rubisco的最大羧化速率)、Jmax(最大光合电子传递速率)和TPU(磷酸丙糖利用率)对干旱与复水的响应机理。结果表明,无论是模拟实验还是野外观测均显示羊草叶片的光合参数随着土壤水分的增加呈抛物线曲线变化,但各光合参数最大值对土壤水分的响应不同。温室模拟下的羊草光合参数Vcmax,Jmax和TPU在土壤含水量分别在15.56%,15.89%和16.23%时达到最大,而野外观测羊草的光合参数Vcmax,Jmax和TPU在土壤含水量分别为16.89%,17%和16.79%时达到最大。复水后羊草植株叶片光合参数的变化取决于前期干旱的影响,土壤含水量18%~19%和15%~16%处理的羊草复水后光合参数能够恢复正常,前者甚至超过正常水平,说明适宜的水分胁迫在复水后能够提高羊草叶片的光合能力,促进光合作用;土壤含水量10%~12%和7%~9%处理下的羊草复水后光合参数则不能恢复到正常水平。土壤含水量15%~16%可能是羊草光合能力在水分胁迫后能否恢复的阈值。 The global environmental change caused by the greenhouse gas emissions led to the increasing changes of temperature and precipitation patterns, and drought and other extreme weather events have occurred frequently. In order to understand and predict the effects of global change on terrestrial ecosystems, it is necessary to obtain the responses of leaf photosynthetic parameters to global change required by process-based model. The responses of photosynthetic parameters of Leymus chinensis to drought and rewatering would be studied in this paper, in order to reveal the mechanisms of the photosynthetic parameters of Leymus ehinensis responding to water stress and rewatering, and to develop the model of photosynthesis parameters responding to water and temperature for accurately simulating photosynthesis. The photosynthetic parameters of typical steppe grass Leymus chinensis was studied based on the data from the greenhouse simulating experiment in Institute of Botany, the Chinese Academy of Sciences and the field observation in Inner Mongolia typical steppe ecosystem research station, Institute of Atmospheric Environment, China Meteorological Administration, Shenyang. The photosynthetic parameters V cmax ( the maximum rate of carboxylation), Jmax ( the maximum potential rate of electron transport) and TPU (the triose phosphate utilization) were obtained from the ACI curve (the relationship curve of net photosynthetic rate and intercellular CO2 concentration) of Leymus chinensis measured by the portable photosynthesis system ( Li-cor, Lincoln, NE, USA). The relationship between the photosynthetic parameters of Leymus chinensis and soil moisture content could be expressed as a parabola curve. The maximum values of V J and TPU would appear when the soil moisture contents were 15.56% , 15.89% and 16.23% in greenhouse conditions and 16.89%, 17% and 16.79% in the field, respectively. The influence of rewatering on the photosynthetic parameters of Leymus ehinensis depended on the level of water stress prior to it. The photosynthetic parameters of Leymus chinensis under the soil moistures of 18%- 19% and 15% - 16% could recover from the water stress quickly, even some of them would increase. It implied that slight water stress could improve photosynthesis and photosynthetic parameters. However, the photosynthetic parameters under the soil moistures of 10%- 12% and 7%- 9% could not recover from the water stress previous. This study also indicated that when the soil moisture is less than 10% - 12%, the photosynthetic parameters of Leymus chinensis would not recover to the normal level even if the rewatering happens.
出处 《生态学报》 CAS CSCD 北大核心 2008年第10期4718-4724,共7页 Acta Ecologica Sinica
基金 国家高技术研究发展计划(863计划)资助项目(2006AA10Z225) 国家重点基础研究发展计划资助项目(2006CB400502) 中国科学院知识创新工程重要方向资助项目(KZCX2-YW-432-04)~~
关键词 羊草 光合参数 最大羧化速率 最大光合电子传递速率 磷酸丙糖利用率 土壤含水量 干旱胁迫 复水 Leymus chinensis the maximum rate of carboxylation the maximum potential rate of electron transport the triose phosphate utilization soil moisture content drought stress rewatering
  • 相关文献

参考文献5

二级参考文献31

  • 1付明胜,张金柱,康清海,耿绥和.论植被建设在改善黄河生态环境中的地位和作用[J].水土保持学报,2002,16(5):127-128. 被引量:6
  • 2刘霞,王礼先,张志强.生态环境用水研究进展[J].水土保持学报,2001,15(6):58-61. 被引量:21
  • 3刘玉壶,夏念和,杨惠秋.木兰科(Magnoliaceae)的起源、进化和地理分布[J].热带亚热带植物学报,1995,3(4):1-12. 被引量:133
  • 4Bachelet D, Neilson R P. Lenihan J M ,et al. Climate change effects on vegetation distribution and carbon budget in the Unit-ed States[J]. Ecosystems, 2001, 4: 164-185.
  • 5Connor D J, Sadras V O. Physiology of yield expression in sunflower[J]. Field Crop Res. , 1992, 308 333-389.
  • 6Faria T, Wilkins D, Besford R T,et al. Growth at elevated COz leads to down-regulation of photosynthesis and altered response to high temperature in Quercus suber L. seedlings[J]. J. Exp. Bot. , 1996, 47, 1755-1761.
  • 7Mitchell R A C, Mitchell V J, Lawlor D W. Response of wheat canopy CO2 and water gas-exchange to soil water content under ambient and elevated CO2[J]. Global Change Biology, 2001, 7:599-611.
  • 8Sadras V O, Milroy S P. Soil-water threshold for the responses of leaf expansion and gas exchange[J]. Field Crop Res. ,1996, 47: 253-266.
  • 9Sinclair T R, Muchow R C, Ludlow M M. Field and model analysis of the effect of water deficits on carbon and nitrogen accumulation by soybean, cowpea and black gram[J]. Field Crops Res. , 1987, 17: 121-140.
  • 10Soltania A, Khooieb F R. Ghassemi-Golezanib K,et al. Thresholds for chickpea leaf expansion and transpiration response to soil water[J]. Field Crops Res. , 2000, 68: 205-210.

共引文献140

同被引文献453

引证文献23

二级引证文献251

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部