摘要
就函数的特征根方程ax2+(b-c)x-d=0的判别式△=0,△>0,△<0讨论f[n](x)=x的存在性.给出存在n使f[n](x)=x成立时,a,b,c,d满足的条件,并给出一些特例及定理的应用.
Discuss the existance of function f[n] (x) = x by the cliscriminant △ = 0, △ > 0, △ < 0 of the eqution ax2 + (b - c)x - d = 0, with a characteristic root of function .Give the terms that satisfy a, b,c,d when n makes f[n] (x) = x tenable and som special instances and applications of certain theorems.
出处
《抚州师专学报》
1997年第3期50-51,共2页
Journal of Fuzhou Teachers College
关键词
迭代
周期性
特征根方程
判别式
函数
iteration
periodicity
charecteristic equation
discrininant