期刊文献+

串联弦系统的控制器和补偿器的设计及其Riesz基 被引量:1

Design of controllers and compensators for a serially connected string system and its Riesz basis
下载PDF
导出
摘要 针对一类串联弦系统,在两端自由,内部连接点处力连续而位移不连续的条件下,论文先在内部连接点处构造补偿器对位移进行补偿,然后在两端设计控制器对系统进行控制.于是得到一个闭环控制系统.利用半群理论证明了这一系统的适定性.通过算子的谱分析,推出了该系统的谱由重数有限的孤立本征值构成并且谱分布在左半复平面,平行于虚轴的一个带域内.因此该系统存在Riesz基,满足谱确定增长条件并且是渐近稳定的. Under free boundary conditions, for a serially connected string system with continuity of vertical force and discontinuity of displacement at the interior nodes, compensators are designed at the interior nodes to compensate the displacement, and controllers are placed on both endpoints to control the system. Thus, a closed loop control system is established. Its well-posedness is then shown via the semigroup theory. From spectrum analysis of operators, it is known that the spectrum of the system is composed of isolated eigenvalues with finite multiplicity, and its spectrum is located in a strip parallel to the imaginary axis in the left half complex plane. Hence, the existence of the Riesz basis is derived and the spectrum-determined growth condition is concluded. The asymptotic stability of the system is thus proved.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2008年第5期815-818,共4页 Control Theory & Applications
基金 国家自然科学基金资助项目(NSFC-60474017) 国家自然科学青年基金资助项目(NSFC-60704015).
关键词 闭环控制系统 弦系统 反馈 控制设备 谱分析 RIESZ基 渐近稳定性 closed loop control systems string system feedback control equipment spectrum analysis Riesz basis asymptotic stability
  • 相关文献

参考文献9

  • 1CHEN G, COLEMAN M, WEST H H. Pointwise stabilization in the middle of the span for second order systems, nonniform and uniform exponential decay of solutions[J]. SlAM Journal on Applied Mathematics, 1987, 47(4): 751 - 780.
  • 2LIU K S, HUANG F L, CHEN G. Exponential stability analysis of a long chain of coupled vibrating strings with dissipative linkage[J]. SIAM Journal on Applied Mathematics, 1989, 49(6): 1694 - 1707.
  • 3COX S, ZUAZUA E. The rate at which energy decays in a Damped string[J]. Communications in Partial Differential Eqnarrays, 1994, 19(1): 213 - 244.
  • 4DAGER R. Observation and control of vibrations in tree-shaped networks of strings[J]. SIAM Journal of Control Optimization, 2004, 43(2): 590-623.
  • 5LEUGERING G. Dynamic domain decomposition of optimal control problems for networks of strings and timoshenko beams[J]. SIAM Journal of Control Optimization, 1999, 37(6): 1649 - 1675.
  • 6GUO B Z, XIE Y. A sufficient condition on Riesz basis with parentheses of non-self-adjoint operator and application to a serially connected string system under joint feedbacks[J]. SIAM Journal of Control Optimization, 2004, 43(4): 1234 - 1252,
  • 7XU G Q, GUO B Z. Riesz basis property of evolution eqnarrays in Hilbert spaces and application to a coupled string eqnarray[J]. SlAM Journal of Control Optimization, 2003, 42(3): 966 - 984.
  • 8LYUBICH Y I, PHONG V Q. Asymptotic stability of linear differential eqnarrays in Banach spaces[J]. Studia Mathematics, 1988, 88:37 - 42.
  • 9XU G Q, HAN Z J, YUNG S E Riesz basis property of serially connected Timoshenko beams[J]. International Journal of Contlol, 2007, 80(3): 470 - 485.

同被引文献12

  • 1Dager R, Zuazua E. Wave Propagation ,Observation and Control in 1-D Flexible Multi-Struetures[M]. USA: Springer Verlag,Mathematiques & Applications,2006.
  • 2Chen G,Coleman M, West H H. Pointwise stabilization in the middle of the span for second order systems, nonuniform and uniform exponential decay of solutions [J]. SIAMJAppl Math, 1987,47 (4) :751-780.
  • 3Liu K S ,Huang F L ,Chen G. Exponential stability analysis of a long chain of coupled vibrating strings with dissipative linkage [J]. SIAM J Appl Math, 1989,49 (6) : 1694-1707.
  • 4Ammari K, Jellouli M. Stabilization of star-shaped tree of elastic strings[J]. Differential and Integral Equations, 2004,17:1395-1410.
  • 5Ammari K,Jellouli M, Khenissi M. Stabilization of generic trees of strings [J]. JDynamical Control Systems, 2005,11 (2) :177-193.
  • 6Xu G Q,Liu D Y, Liu Y Q. Abstract second order hyperbolic system and applications to controlled network of strings [J]. SlAM J Control and Optimization ,2008, 47 (4) : 1762-1784.
  • 7Xu G Q, Guo B Z. Riesz basis property of evolution equations in Hilbert spaces and application to a coupled string equation[J]. SIAM J Control and Optimization, 2003,42 (3) :966-984.
  • 8Guo B Z, Xie Y. A sufficient condition on Riesz basis with parentheses of non-self-adjoint operator and application to a serially connected string system under joint feedbacks[ J]. SlAM J Control and Optimization, 2004,43 (4) : 1234-1252.
  • 9Guo Y N,Xu G Q,Yang L L. Riesz basis property for generic network of strings [C] //Proceedings of the 26th Chinese Control Conference. Zhangjiajie, China, 2007 : 656-659.
  • 10Dager R. Observation and control of vibrations in tree- shaped networks of strings [J]. SlAM J Control Optim, 2004,43 (2) :590-623.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部