期刊文献+

退火递归神经网络极值搜索算法及其在无人机紧密编队飞行控制中的应用 被引量:5

An annealing recurrent neural network for extremum seeking algorithm and its application to unmanned aerial vehicle tight formation flight
下载PDF
导出
摘要 针对无人机紧密编队飞行问题,以气动干扰引起的僚机俯仰角θw作为极值搜索变量,利用退火递归神经网络极值搜索算法,使僚机干扰俯仰角θw收敛至其极值,从而解决了无人机紧密编队飞行中僚机所需动力最小化的问题.将退火递归神经网络与极值搜索算法相结合,消除了传统极值搜索算法中控制量的来回切换问题和输出"颤动"现象,改善了系统的动态性能,同时简化了系统的稳定性分析.通过对无人机紧密飞行编队的仿真,验证了该算法的有效性. In the unmanned aerial vehicle (UAV) tight formation flight, a novel annealing recurrent neural network combined with the extremum seeking algorithm (ESA) is used to search the extremum of the wingman pitch angle produced by the vortices, for minimizing the required power of the wingman. This combination eliminates the back-and-forth switching between control variables in the conventional ESA and suppresses the "chattering" in the output, greatly improving the dynamic performance of the system and simplifying the stability analysis of the controlled system. This algorithm is validated by a simulation of UAV tight formation.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2008年第5期879-882,共4页 Control Theory & Applications
基金 国家自然科学基金资助项目(60674090).
关键词 紧密编队飞行 极值搜索算法 退火 递归神经网络 无人机 tight formation flight extremum seeking algorithm annealing recurrent neural networks unmanned aerial vehicle
  • 相关文献

参考文献9

  • 1COREY J S, RAJEEVA KI Adaptive control of UAVs in close- Coupled formation flight[C] // Proceedings of the American Control Conference. Chicago, USA: IEEE Press, 2000:849 - 853.
  • 2HUMMEL D. The use of aircraft wakes to achieve power reduction in formation flight[C]//Proceedings of the Fluid Dynamics Panel Symposium. Aix-en-Provence, France: AGARD, 1996: 1777- 1794.
  • 3CHICHKA D F, SPEYER J, PARK C G. Peak-seeking control with application to formation flight[C] // Proceedings of the 38th IEEE Conference on Decision and Control. Piscataway, NJ, USA: IEEE Press, 1999: 2463- 2470.
  • 4ZUO B, HU Y A. UAV tight formation flight modeling and autopilot designing[C]//Proceedings of the Fifth World Congress on Intelligent Control and Automation. Hangzhou, China: IEEE Press, 2004: 181 - 184.
  • 5KRSTIC M. Toward faster adaptation in extremum seeking control[C]//Proceeding of the 39th IEEE Conference on Decision and Control Phoenix, USA: IEEE Press, 1999:4766 - 4771.
  • 6ROTEA M A. AnalySis of multivariable extremum seeking algorithms[C] //Proceedings of the American Control Conference. Chicago, USA: IEEE Press, 2000:437 - 443.
  • 7PAN Y D, UMIT O, TANKUT A. Stability and performance improvement of extremum seeking control with sliding mode[J]. International Journal of Control, 2003, 76(9/10): 968 - 985.
  • 8PATHER M, D'AZZO J J, PROUD A W. Tight formation flight control[J]. Journal of Guidance, Control and Dynamics, 2001, 24(2): 246 - 254.
  • 9左斌.极值搜索算法研究与应用[D].烟台:海军航空工程学院.2005.

共引文献3

同被引文献59

  • 1俞辉,王永骥,程磊.基于有向网络的智能群体群集运动控制[J].控制理论与应用,2007,24(1):79-83. 被引量:18
  • 2LI B,LIAO X H,SUN Z,et al.Robust autopilot for close formation flight of multi-UAVs[C] //Proceedings of the38th Southeastern Symposium on System Theory.Cookville,TN,.USA:SSST,2006:5-7.
  • 3BOSKOVIC D,LI S M,RAMAN K,et al.Semi-globally stable formation flight control design in three dimensions[C] //Proceedings of the 40th IEEE Conference on Decision and Control.Orlando,FL:IEEE Press,2001,2:1059-1064.
  • 4ZUO Bin,HU Yun-an.UAV tight formation flight modeling and autopilot designing[C] //Proceedings of the 5th World Congress on Intelligent Control and Automation.Hangzhou:IEEE,2004:180-183.
  • 5ELHAM Semsar.Adaptive formation control of UAVs in the presence of unknown vortex forces and leader commands[C] //Proceedings of the 2006 American Control Conference.Minneapolis,Minnesota,USA:IEEE,2006:3563-3569.
  • 6SONG Y D,LI Yao,LIAO X H.Orthogonal transformation based robust adaptive close formation control of multi-UAVs[C] //Proceedings of 2005 American Control Conference.Portland,OR,USA:ACC,2005:2983-2988.
  • 7SEUNGKEUN Kim,YOUDAN Kim.Three dimensional optimum controller for multiple UAV formation flight using behavior-based decentralized approach[C] //Proceedings of International Conference on Control,Automation and Systems.Seoul,Korea:COEX,2007:1387-1392.
  • 8TRAVIS Dierks,JAGANNATHAN S.Neural network control of quadrotor UAV formations[C] //Proceedings of 2009 American Conference on UAV.Louis,MO,USA:[s.n.] ,2009:2990-2996.
  • 9SONG Y D.Memory-based Control of Nonlinear Dynamic Systems Part Ⅰ-Design and Analysis[C] //Proceedings of2006 1st IEEE Conference on Industrial Electronics and Applications.Singapore:ICIEA,2006:1-6.
  • 10BOSKOVIC D, LI S M, RAMAN K, et al. Semiglobally stable formation flight control design in three dimensions [C] // Proceedings of the 40th IEEE Conference on Decision and Control, December4-7 , 2001. Orlando, Florida, USA: IEEE, 2001, 2: 1059-1064.

引证文献5

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部