摘要
针对无人机紧密编队飞行问题,以气动干扰引起的僚机俯仰角θw作为极值搜索变量,利用退火递归神经网络极值搜索算法,使僚机干扰俯仰角θw收敛至其极值,从而解决了无人机紧密编队飞行中僚机所需动力最小化的问题.将退火递归神经网络与极值搜索算法相结合,消除了传统极值搜索算法中控制量的来回切换问题和输出"颤动"现象,改善了系统的动态性能,同时简化了系统的稳定性分析.通过对无人机紧密飞行编队的仿真,验证了该算法的有效性.
In the unmanned aerial vehicle (UAV) tight formation flight, a novel annealing recurrent neural network combined with the extremum seeking algorithm (ESA) is used to search the extremum of the wingman pitch angle produced by the vortices, for minimizing the required power of the wingman. This combination eliminates the back-and-forth switching between control variables in the conventional ESA and suppresses the "chattering" in the output, greatly improving the dynamic performance of the system and simplifying the stability analysis of the controlled system. This algorithm is validated by a simulation of UAV tight formation.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2008年第5期879-882,共4页
Control Theory & Applications
基金
国家自然科学基金资助项目(60674090).
关键词
紧密编队飞行
极值搜索算法
退火
递归神经网络
无人机
tight formation flight
extremum seeking algorithm
annealing
recurrent neural networks
unmanned aerial vehicle