期刊文献+

层流冷却过程混合智能参数辨识 被引量:4

Hybrid intelligent parameter identification of the laminar cooling process
下载PDF
导出
摘要 热轧层流冷却过程带钢温度难以连续检测,其换热系数具有随工况频繁变化而变化、动态特性具有时变、强非线性等综合复杂特性.正确辨识热轧层流冷却过程带钢温度的离散动态模型中的换热系数是提高模型精度的关键.本文将案例推理技术和神经网络技术相结合,提出了混合智能参数辨识方法.采用某钢铁公司热轧层流冷却过程实际运行数据对所提出的方法进行实验研究.结果表明本文提出的混合智能参数辨识方法大大提高了层流冷却过程带钢温度预报精度. In a heat-rolling laminar cooling process, it is difficult to continuously measure the strip temperature online. The heat transfer parameters are subjected to changes due to the varying operating conditions, with time-varying and nonlinear characteristics. Its correct identification is the key factor in the determination of the discrete dynamic model for the strip temperature during the laminar cooling process. A hybrid intelligent parameter identification algorithm is developed by combining the (RBF) neural networks and case-based reasoning. Tests using real industrial data in a steel plant show that the hybrid intelligent parameter identification approach contributes great precision improvement in the prediction of the strip temperature during the laminar cooling process.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2008年第5期933-937,共5页 Control Theory & Applications
基金 国家重点基础研究发展"973"计划资助项目(2002CB312201) 国家自然科学基金重点资助项目(60534010) 国家创新研究群体科学基金项目(60521003) 长江学者和创新团队发展计划资助项目(IRT0421).
关键词 层流冷却 参数辨识 神经网络 案例推理 laminar cooling parameter identification neural networks case-based reasoning
  • 相关文献

参考文献7

  • 1GUO R M, HWANG H T. Investigation of strip cooling behavior in the run-out section of hot strip mill[J]. Journal of Mater Processing Manufacturing Science, 1996, 4(4): 339 - 351.
  • 2CHAI T Y, TAN M H, CHEN X Y. Intelligent optimization control for laminar cooling[C] // Proceeding of the 15th IFAC World Congress. Barcelona, Spain: Elsevier Science Ltd, 2002:181 - 186
  • 3FLETCHER R, XU C. Hybirid methods for nonlinear least squares[J]. IMAJ Numer Anal, 1979, 7:371 - 389.
  • 4TJOA I B, BIEGLER L T. Simultaneous solution and optimization strategies for parameter estimation of differential-algebraic equation systems[J], Ind Engng Chem Res, 1991, 30: 376- 385.
  • 5谭明皓,柴天佑.基于案例推理的层流冷却过程建模[J].控制理论与应用,2005,22(2):248-253. 被引量:24
  • 6KOLODNER J L. An introduction to case-based reasoning[J]. Artificial Intelligence Review, 1992, 6(1): 3 - 34.
  • 7PAL S K, DE P K, BASAK J. Unsupervised feature evaluation: a neuro-fuzzy approach[J]. IEEE Transactions on Neural Networks, 2000, 11(2): 366 - 376.

二级参考文献14

  • 1王笑波,任德祥,邵惠鹤,柴天佑.一种多层次递阶建模方法[J].系统仿真学报,2001,13(z1):18-20. 被引量:6
  • 2单旭沂.宝钢2050mm热轧层流冷却控制系统改造开发[C]..杭州: 中国科技年会[C].,1999..
  • 3王仲初 柴天佑.基于模型的中厚板水幕连续冷却的前馈-反馈控制系统.自动化学报,2000,26(8):163-167.
  • 4CHAI Tianyou, TAN Minghao, CHEN Xiaoyan, et al. Intelligent optimization control for laminar cooling [C] // Proc of the 15th IFAC World Congress. Barcelona, Spain: Elsevier Science,2002.
  • 5AUMAN P M, GRIFFITHS D K, HILL D R. Hot strip mill nm-out table temperature control [ J]. Iron and Steel Engineer, 1967,44(9):174- 179.
  • 6GROCH A G,GUBERNAT R,BIRSTEIN E R.Automatic control of laminar flow cooling in continuous and reversing hot strip mills [ J].Iron and Steel Engineer, 1990,67(9): 16 - 20.
  • 7MOFFAT R W, MOORE M C, ROBINSON M J, et al. Computer control of hot strip coiling temperature with variable flow laminar spray [C]//AISE Year Book. Pittsburgh: [ s. n. ], 1985:474 - 481.
  • 8LEITHOLF M D, D AHM J R. Model reference control of runout table cooling at LTV [C]//AISE Year Book. Pittsburgh: [ s. n. ], 1989:255 - 259.
  • 9van DITZHUIJZEN G. The controlled cooling of hot rolled strip: a combination of physical modelling, control problems and practical adaptation [ J ]. IEEE Trans on Automatic Control, 1993,38 ( 7 ): 1060- 1065.
  • 10EVANS J F, ROEBUCK I D, WALKINS H R. Numerical modeling of hot strip mill runout table cooling [ J ]. Iron and Steel Engineer,1993 ,70(1) :50 - 55.

共引文献23

同被引文献32

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部