摘要
热轧层流冷却过程带钢温度难以连续检测,其换热系数具有随工况频繁变化而变化、动态特性具有时变、强非线性等综合复杂特性.正确辨识热轧层流冷却过程带钢温度的离散动态模型中的换热系数是提高模型精度的关键.本文将案例推理技术和神经网络技术相结合,提出了混合智能参数辨识方法.采用某钢铁公司热轧层流冷却过程实际运行数据对所提出的方法进行实验研究.结果表明本文提出的混合智能参数辨识方法大大提高了层流冷却过程带钢温度预报精度.
In a heat-rolling laminar cooling process, it is difficult to continuously measure the strip temperature online. The heat transfer parameters are subjected to changes due to the varying operating conditions, with time-varying and nonlinear characteristics. Its correct identification is the key factor in the determination of the discrete dynamic model for the strip temperature during the laminar cooling process. A hybrid intelligent parameter identification algorithm is developed by combining the (RBF) neural networks and case-based reasoning. Tests using real industrial data in a steel plant show that the hybrid intelligent parameter identification approach contributes great precision improvement in the prediction of the strip temperature during the laminar cooling process.
出处
《控制理论与应用》
EI
CAS
CSCD
北大核心
2008年第5期933-937,共5页
Control Theory & Applications
基金
国家重点基础研究发展"973"计划资助项目(2002CB312201)
国家自然科学基金重点资助项目(60534010)
国家创新研究群体科学基金项目(60521003)
长江学者和创新团队发展计划资助项目(IRT0421).
关键词
层流冷却
参数辨识
神经网络
案例推理
laminar cooling
parameter identification
neural networks
case-based reasoning