期刊文献+

索网桁架式可展开天线的多目标优化设计 被引量:2

Multi-objective Optimization for a Cable-truss Deployable Space Antenna
下载PDF
导出
摘要 针对太空索网桁架式可展开天线的结构特点和性能要求建立了天线的有限元分析模型,并对其结构进行了优化设计研究。以天线的刚性周边桁架壁厚和柔性索单元内施加的预应力为设计变量,结构重量和天线表面精度为目标函数,结构的基频为约束条件,建立了天线的多目标优化数学模型。考虑到索网结构几何非线性计算的复杂性,采用遗传算法对模型进行优化求解。通过算例分析,得到了不同权重值时的多目标优化解集,优化结果对于工程实践具有一定的指导意义,也同时证明了该模型与方法的可行性和有效性。 In this paper a FEM analysis model of cable-truss deployable antenna is proposed according to the special requirements for spaceborne antenna. Based on this FEM model, an optimal mathematic model is built with the minimum weight and surface accuracy as the objective function, the truss thicknesses and cable tensions as the design variables the natural frequency as the constraint. Since it is difficult to solve such a complex model involved geometric nonlinearity calculation, a genetic algorithm is used to facilitate the multi-objective optimization and to find the global optima of this problem. The representative result selected from the Pareto-optimal front shows the validity and effectiveness of the proposed method and model.
出处 《机械设计与研究》 CSCD 北大核心 2008年第5期112-115,共4页 Machine Design And Research
关键词 多目标优化 可展开天线 索网结构 几何非线性 表面精度 遗传算法 multi-objective optimization deployable antenna cable-truss structure geometric nonlinearity surface accuracy genetic algorithm
  • 相关文献

参考文献9

  • 1刘明治,高桂芳.空间可展开天线结构研究进展[J].宇航学报,2003,24(1):82-87. 被引量:70
  • 2狄杰建,仇原鹰,段宝岩,罗鹰.可展星载天线的三维造型与展开过程的运动仿真[J].机械设计与研究,2004,20(4):10-11. 被引量:1
  • 3Mark W Thomson. Astromesh Deployable Reflectors for Kn-and Ka-Band Commercial satellites [ R ]. 20th AIAA International Communication Satelite Systems Conference and Exhibit, May, 12 -15, 2002, Montreal, Quebec, Canada.
  • 4狄杰建,段宝岩,杨东武,罗鹰.索网式星载展开天线结构纵向调整索数及其初始张力的优化[J].机械工程学报,2005,41(11):153-157. 被引量:16
  • 5Wu S J, Chow P T. Integrated discrete and configuration optimization of trusses using genetic algorithms [J]. Computers and Structures, 1995, 55(4): 695 -702.
  • 6Lin C Y, Hajiela P. Genetic algorithms in optimization problems with discrete and integer design variables [ J ]. Engineering Optimization, 1992, 19(4):309-327.
  • 7Karoumi R. Some modeling Aspects in Nonlinear Finite Element Analysis of Cable Supported Bridges [ J ]. Computers & Structures, 2000, 71 (4): 41 -50.
  • 8郑赟韬,方杰,蔡国飙.应用于工程设计的多目标优化方法比较[J].北京航空航天大学学报,2006,32(7):860-864. 被引量:8
  • 9Iason Hatzzkis, David R Wallace. Topology of Anticipatory Populations for Evolutionary Dynamic Multi-Objective Optimization [ R ]. 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Sept, 6- 8, 2006, Portsmouth, Virginia.

二级参考文献30

  • 1张宪民.连杆机构多目标综合平衡中最佳非劣解的模糊识别[J].机械科学与技术,1997,16(1):105-110. 被引量:2
  • 2宗志方 季辉等(译).资源手册[M].北京:电子工业出版社,1998..
  • 3刘明治.スパン展开构造物の质量分布及び形状分析[J].日本宇宙科学研究,所名取研第七回ゼミナ-,1995,12.
  • 4陈艳.[D].西安电子科技大学,1994.
  • 5Zitzler E,Thiele L.An evolutionary alogrithms for multiobjective optimization:the strength Pareto approach[R].TIK-Report,No.43,1998
  • 6Carlos C,Helio J.A non-generational genetic alorithm for mutiobjective optimization[C]// 2000 Congress on Evolutionary Computation.San Diego,California:[s.n.],2000:172-179
  • 7Carlos A.An updated survey of evolutionary multiobjective optimization techniques:state of the art and future trends[C]// Proceedings of the 1999 Congress on Evolutionary Computation CEC99.Washington,DC:[s.n.],1999:3-13
  • 8Kalynmoy D,Amrit P,Meyarivan T.Constrained test problems for multiobjective evolutionary optimization[R].KanGAL Repart NO.200002,2000
  • 9Shinya W,Tomoyuki H,Mitsunori M.Neighborhood cultivation genetic algorithm for multi-objective optimization problems[C]// Proceedings of 4th Asia-Pacific Conference on SEAL,2002:198-202
  • 10胡殹达.实用多目标最优化[M].上海:上海科技出版社,1990:15-60

共引文献87

同被引文献17

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部