期刊文献+

带衰退记忆的抽象发展方程全局吸引子的存在性 被引量:6

Existence of global attractors for abstract evolution equations with fading memory
下载PDF
导出
摘要 利用一些最新的研究结果,证明了带衰退记忆的抽象发展方程解的全局吸引子的存在性. The existence of global attractors of solutions for abstract evolution equation was discussed by applying some new results and the existence of global attractors of solution semi-group for abstract evolution equation was proved.
作者 汪璇 任利宁
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第5期99-102,107,共5页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金(10771089) 甘肃省自然科学基金(3ZS061-A25-016)资助.
关键词 抽象发展方程 记忆核 全局吸引子 abstract evolution equation memory kernel global attractor
  • 相关文献

参考文献10

  • 1COLEMAN B D, NOLL W. Foundations of linear viscoelasticity[J]. Rev Mod Phys, 1961, 33: 239-249.
  • 2DAFERMOS C M. Asymptotic stability in viscoelasticity[J]. Arch Rational Mech Anal, 1970, 37: 297- 308.
  • 3FABRIZIO M, MORRO A. Mathematical problem in linear viscoelasticity[C]//SLAM Studies in Applied Mathematics. Philadelphia: SLAM, 1992.
  • 4TEMAM R. Infinite dimensional dynamical system in meehanics and physicS[M]. 2nd ed. New York: Spring Verlag,1997.
  • 5AN Y.On the suspension bridge equations and the relevant problems[D].兰州:兰州大学数学与统计学院,2001.
  • 6GIORGI C, RIVERA J E M, PAT4 V. Global at tractors for a semilinear hyperbolicequations in vis coelasticity[J]. J Math Anal Appl, 2001, 260: 83-99.
  • 7PATA V, ZUCCHI A. Attractors for a damped hyperbolic equation with linear memory[J]. Adv Math Sci Appl, 2001,11(2): 505-529.
  • 8MA Qiao-zhen, ZHONG Cheng-kui. Existence of strong global attractors for hyperbolic equation with linear memory[J], Applied Mathematics and Computation, 2004. 157: 745-758.
  • 9钟承奎,牛明飞.关于无穷维耗散非线性动力系统全局吸引子的存在性[J].兰州大学学报(自然科学版),2003,39(2):1-5. 被引量:6
  • 10MA Qing-feng, WANG Shou-hong, ZHONG Cheng- kui. Necessary and sufficient conditions for the existence of global attractor forsemigroup and application[J]. Indiana University Mathematics Journal, 2002, 51(6): 1 541-1559.

二级参考文献5

  • 1Rbinson James C. Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors [M].Cambridge :Cambridge University Press ,2001.
  • 2Sell George R,You Yuncheng. Dynamics of Evolutionary Equations [M]. New York :Springer, 2002.
  • 3Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics [M]. New York: Springer,1997.
  • 4Hale J K. Asymptatic Behavior of Dissipative Systems[M]. AMS Providence RJ, 1988.
  • 5Ma Q F,Wang Sh H,Zhong C K. Necessary and sufficient conditions for the existence of global attractors for semigroups and applications[J]. Indiana Uni Math J,2002,51(6):1542-1558.

共引文献5

同被引文献63

  • 1COLEMAN B D, NOLL W. Foundations of linear viscoelasticity[J]. Rev Mod Phys, 1961, 33: 239-249.
  • 2DAFERMOS C M. Asymptotic stability in viscoelasticity[J]. Arch Rational Mech Anal, 1970, 37: 297-308.
  • 3FABRIZIO M, MORRO A. Mathematical problem in linear viscoelasticity[C]//SLAM Studies in Applied Mathematics. Philadelphia: SLAM, 1992.
  • 4TEMAM R. Infinite dimensional dynamical system in mechanics and physics[M]. 2 nd ed. New York: Spring-Verlag, 1997.
  • 5AN Yu-kun. On the suspension bridge equations and the relevant problems[D].兰州:兰州大学数学与统计学院,2001.
  • 6GIORGI C, RIVERA J E M, PATA V. Global attractors for a semilinear hyperbolic equations in viscoelasticity[J]. J Math Anal Apply 2001,260: 83-99.
  • 7PATA V, ZUCCHI A. Attractors for a damped hyperbolic equation with linear memory[J]. Adv Math Sci Appl, 2001, 11(2): 505-529.
  • 8MA Qiao-zhen, ZHONG Cheng-kui. Existence of strong global attractors for hyperbolic equation with linear memory[J]. Applied Mathematics and Computation, 2004, 157- 745-758.
  • 9ZHONG Cheng-kui, YANG Mei-hua, SUN Chun-you. The existence of global attractors for the norm-toweak continuous semigroup and its application to the nonlinear reaction-diffusion equations[J]. J Differential Equations, 2006, 223: 367-399.
  • 10MA Qing-feng, WANG Shou-hong, ZHONG Chengkui. Necessary and sufficient conditions for the existence of global attractor for semigroup and application[J]. Indiana University Mathematics Journal, 2002, 51(6): 1541-1 559.

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部