期刊文献+

自适应PBIL算法求解一类动态优化问题 被引量:2

Adaptive PBIL algorithm for a class of dynamic optimization problems
下载PDF
导出
摘要 在不确定环境中,环境的变化总是以一定的概率发生,本文把何时变化看作随机变量,其满足一定的统计规律,由此归纳出一类动态优化问题。对于此类动态优化问题的求解,提出了自适应PBIL(Population-based incremental learning algorithm)算法。算法中利用随机变量的概率自适应地调整当前代群体的概率模型,增加种群多样性,快速适应环境的变化。应用两个动态优化问题进行了仿真实验。实验结果表明,与传统PBIL算法相比,自适应PBIL算法能够快速跟踪最优解的变化。 In an uncertain environment, the environmental changes always occur with probabilities. In this paper the moment when a change occurs is considered as a random variable, which obeys certain distribution, and the dynamic problems possess such features are classified as a class of dynamic optimization problems. Then an adaptive population-based incremental learning (PBIL) algorithm is proposed to solve the class of dynamic optimization problems. This algorithm applies the adaptive probability of random variable to regulate the probable model of the current population. The objectives are to increase the population diversity and to rapidly adapt the environmental changes. Results of case study show that compared with traditional PBIL algorithm, the proposed adaptive PBIL algorithm can track the dynamic solution reliably and accurately.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第6期1378-1382,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(60374063)
关键词 人工智能 动态优化问题 PBIL算法 种群多样性 artificial intelligence dynamic optimization problems PBIL (Population-based incremental learning) algorithm population diversity
  • 相关文献

参考文献12

  • 1Yaochu J, Branke J. Evolutionary optimization in uncertain cnvironments-a s survey[J] IEEE Transactions on Evolutionary Computations, 2005, 9(3) : 1-15.
  • 2Bierwirth C, Mattfeld D C. Production scheduling and rescheduling with genetic Algorithms[J]. Evolutionary Computation, 1999, 7 (1): 1218-1228.
  • 3Cobb H G. An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having conlinuous, time2dependent nonstalionary environment[R]. Washington: Naval Re search Laboratory, 1990.
  • 4Morrison R W, Jong de K A. Triggered hypermutation revlsited[C]//Proc of Congress on Evolutionary Computation. Piscataway: IEEE Service Center, 2000:1025-1032.
  • 5Eriksson R, Olsson B. On the performance of evolutionary algorithms with life2time adaptation in dy namic fitness landseapes[C]//Proc of 2004 Congress on Evolutionary Computing, Piseataway: IEEE Service Center, 2004:1293- 1300.
  • 6Collard P, Escazut C, C-aspar A. An evolutionary approach for time dependanl optimization[J]. Int J on Artificial Intelligence Tols, 1997, 6 (4) : 665-695.
  • 7Grefenstette J J, Genetic algorithms for changing environments[C] // Parallel Problem Solving from Nature, Brussels, 1992:137-144.
  • 8Branke J. Memory enhanced evolutionary algorithms for changing optimization problems[C]//Proc of The 1999 Congress on Evolutionary Computation, Piscataway: IEEE Service Center, 1999: 1875-1882.
  • 9Oppacher F, Wineberg M. The shifting balance genetic algorithm: Improving the GA in a dynamic environment[C]//Proc of Genetic and Evolutionary Computation Conf. San Francisco: Morgan Kaufmann Publisher, 1999:504-510.
  • 10Baluja S. Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning[R]. Technical report CMU-CS 94-16a, Carnegie Mellon University, USA, 1994.

同被引文献17

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部