期刊文献+

飞机舱音背景声下的鲁棒语音端点检测 被引量:2

ROBUST SPEECH ENDPOINT DETECTION IN AIRPLANE COCKPIT VOICE BACKGROUND
下载PDF
导出
摘要 有效提取飞机舱音背景声下的语音信息对飞机失事原因调查十分重要。提出了基于统计模型的语音端点检测方法。利用高斯混合模型逐帧计算语音/非语音状态的输出概率,利用后向估计方法和平行非线性卡尔曼滤波器估计非平稳噪声帧。最后,通过似然比门限值的计算区分语音和非语音段。与目前典型的语音端点检测算法的对比实验表明,在飞机舱音背景声下,该算法具有较好的准确性、自适应性和鲁棒性。 It is very important to accident cause investigation on a wrecked airplane that speech information in airplane cockpit voice background is effectively extracted.The speech endpoint detection technique based on a statistical model is proposed.Output probability of speech/non-speech state is calculated sequentially using a Gaussian mixture model,backward estimation and parallel non-linear Kalman filter are used to estimate non-stationary noise.At last,likelihood calculation is used for speech/non-speech discrimination.Compared with the typical algorithms,this algorithm operates reliably,adaptively and robustly in airplane cockpit voice background.
出处 《振动与冲击》 EI CSCD 北大核心 2008年第10期83-86,共4页 Journal of Vibration and Shock
基金 总装预研基金(9140A27020308JB3201) 国家高技术研究发展计划(863计划)2007BJ131
关键词 语音端点检测 统计模型 非线性卡尔曼滤波 后向估计 鲁棒 speech endpoint detection statistical model non-linear Kalman filter backward estimation robust
  • 相关文献

参考文献9

  • 1程道来,仪垂杰,姚红宇,郭健翔,周扬民.飞机舱音记录器声信息识别方法的初步研究[J].噪声与振动控制,2006,26(3):81-84. 被引量:15
  • 2国雁萌,付强,颜永红.复杂噪声环境中的语音端点检测[J].声学学报,2006,31(6):549-554. 被引量:17
  • 3Nemer E, Goubran R, Mahmoud S. Robust voice avtivity detection using higher-order statistics in the LPC residual domain[J]. IEEE Trans. on Speech and Audio Processing, 2001, 9(3): 217--231.
  • 4Ramirez J, Segura J C, Benitex C, et al. Efficient voice activity detection algorithm using long-term speech information [J]. speech communication, 2004, 42(4):271--287.
  • 5Ishizuka K, Kato H. A feature for voice activity detection derived from speech analysis with the exponential autoregressive model[J]. Proc. of ICASSP'06, Toulous, France,2006, 1: 759--792.
  • 6Sohn J, Kim N S, Sung W. A statistical model-based voice activity detection[ J]. IEEE Signal Processing Letters, 1999, 6(1) :1--3.
  • 7Gales M J F. Model-Based Techniques for Noise Robust Speech Recognition. Ph. D Thesis, Cambridge University, 1995, 9.
  • 8Childers D G. Speeech proceeding and synthesis toolboxes [ M]. John Wiley & Sons, Inc,2000.
  • 9ITU, A silence compression scheme for G. 729 optimized for terminals conforming to recommendation V. 70, ITU-T Recommendation G. 729-Annex B, 1996.

二级参考文献22

  • 1栗学丽,丁慧,徐柏龄.基于熵函数的耳语音声韵分割法[J].声学学报,2005,30(1):69-75. 被引量:34
  • 2陈振标,徐波.基于子带能量特征的最优化语音端点检测算法研究[J].声学学报,2005,30(2):171-176. 被引量:22
  • 3孙志强,邱忠,刘瑛,等.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2005.
  • 4James R.Cash.Group Chairman's Report of Investigation Sound Spectrum Study of Cockpit Voice Recorder,American Airlines Flight 587,DCA02MA001,Belle Harbor,NY,Nov.12,2002.
  • 5舒平,钟民主,杨琳.舱音记录器译码系统的改进[J].中国航空学会青年科技论坛文集,2004.
  • 6Ronald Stearman.Signal Analysis of Cockpit Voice Recorder Data,Report No.ASE46Q-FP1[R].The University of Texas,2003.August.16.
  • 7葛哲学.小波分析理论与MATLAB7实现[M].北京:电子工业出版社,2005.
  • 8Chider,D.G.Speech Processing and Synthesis Toolboxes by Matlab(影印版)[M].北京:清华大学出版社,2004.
  • 9Lynch Jr J F, Josenhans J G, Croehiere R E. Speech/silence segmentation for real-time coding via rule based adaptive endpoint detection. In: Proc. ICASSP, Dallas, 1987:1348-1351
  • 10Mark Marzinzik, Birger Kollmeier. Speech pause detection for noise spectrum estimation by tracking power envelope dynamics. IEEE Trans. Speech and Audio, 2002; 10(2):109-118

共引文献29

同被引文献25

  • 1胡莹,陈克安,潘凯.基于统计能量分析的飞机舱室降噪研究[J].噪声与振动控制,2007,27(2):65-68. 被引量:9
  • 2Takahashi Y,Takatani T,Osako K,et al.Blind Spatial Subtraction Array for Speech Enhancement in Noisy Environment[J].IEEE transactions on audio,speech,and language processing,2009,17(4):650-664.
  • 3Potamitis L,Fakotakis N,Kokkinakis G.Independent component analysis applied to feature extraction for robust automatic speech recognition[J].Electronics letters,9th November,2000,36(23):1977-1978.
  • 4Chien J T,Chen B C.A new independent component analysis for speech recognition and separation[J].IEEE transactions on audio,speech and language processing,2006,14 (4):1245-1253.
  • 5Asano F,Ikeda S,Ogawa M,et al.Combined Approach of Array Processing and Independent Component Analysis for Blind Separation of Acoustic Signals[J].IEEE Transactions on Speech and Audio Processing.2003,11 (3):204-215.
  • 6Bingham E,Hyvarinen A.A fast fixed-point algorithm for independent component analysis of complex valued signals[J].Int.J.Neural Systems,2000,10:1-8.
  • 7Smaragdis P.Blind separation of convolved mixtures in the frequency domain[J],Neurocomput.,1998,22:21-34.
  • 8Ikeda S,Murata N.A method of ICA in time-frequency domain[J],Proc.ICA1999,99:365-370.
  • 9Ikram M Z,Morgan D R.A beamforming approach to permutation alignment for multichannel frequency-domain blind speech separation[J],in Proc.ICASSP,May 2002,881-884.
  • 10Sawada H,Mukai.R,Araki S.et al.A robust and precise method for solving the permutation problem of frequencydomain blind source separation[J].IEEE Trans.on Speech and Audio Processing,2004,12(15):530-538.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部