期刊文献+

细菌群趋药性算法在电气设备缺陷参数红外识别中的应用 被引量:3

Application of Bacterial Colony Chemotaxis Optimization Algorithm in Infrared Identification of Parameters of Defect in Electric Apparatus
下载PDF
导出
摘要 将电气设备零件缺陷参数的红外定量识别视为某种形式的结构设计优化问题,引入细菌群趋药性优化算法和径向基函数神经网络,搭建了一个简单而完整、通用灵活的多学科设计优化框架对该问题进行求解。其中径向基函数神经网络作为代理模型,精度较高、计算速度较快,可简化复杂、费时的有限元计算以得到不同缺陷参数条件下零件表面的温度场;将该温度场与目标温度场之间的差异作为目标函数,以细菌群趋药性优化算法进行缺陷参数的定量识别。该方法在一个简单的三维夹杂型缺陷参数的红外识别算例中取得了满意的结果,与粒子群优化算法相比,可以更快地接近优化解。 The quantitative infrared identification of parameters of defect in electric apparatus using the surface temperature profile was considered as a structure design optimization problem. A bacterial colony chemotaxis (BCC) optimization algorithm and a radial basis function neural network (RBFNN) were introduced into solving this problem, then a simple but complete multidisciplinary design optimization framework was constructed for the sake of generality and flexibility. The RBFNN was a precise and convenient surrogate model for the time costly finite element computation, and the difference between the obtained the surface temperature with different defect parameters and the target surface temperature profile was the objective function of the BCC optimization algorithm. This method was applied to a simple verification case and the result is quite acceptable. The BCC algorithm was also compared with the particle swarm optimization algorithm, and the results show that the former can access the optimum with faster speed.
出处 《中国电机工程学报》 EI CSCD 北大核心 2008年第30期113-118,共6页 Proceedings of the CSEE
基金 总装"十一.五"装备维修改革基金项目(KY38010914)。
关键词 细菌群趋药性算法 缺陷 识别 红外 传热反问题 多学科设计优化 bacterial colony chemotaxis algorithm defect identification infrared inverse heat transfer problem multidisciplinary design optimization
  • 相关文献

参考文献22

  • 1范春利,孙丰瑞,杨立,刘宝华.电气设备零件内部三维缺陷的定量红外识别算法研究[J].中国电机工程学报,2006,26(2):159-164. 被引量:29
  • 2寇蔚,孙丰瑞,杨立.粒子群优化算法用于缺陷的红外识别研究[J].激光与红外,2006,36(8):710-714. 被引量:3
  • 3Galietti U, Luprano V, Nenna S. Non-destructive defect characterization of concrete structures reinforced by means of FRP [J]. lnfrared Physics&Techuology, 2007, 49(3): 218-223.
  • 4Cheng C H, Chang M H. Shape Identification by inverse heat transfer method[J]. Journal ofHeatTransfer, 2003, 125(2): 224-231.
  • 5Huang C H, Shih C C. A shape identification problem in estimating simultaneously two interracial configurations in a multiple region domain[J]. Applied ThermalEngineering, 2006, 26(1): 77-88.
  • 6Su C H, Chen C K. Geometry estimation of the furnace inner wall by an inverse approach[J]. International Journal of Heat and Mass Transfer, 2007, 50(19-20): 3767-3773.
  • 7Chen C K, Su C H. Inverse estimation for temperatures of outer surface and geometry of inner surface of furnace with two layer walls [J]. Energy Conversion and Management, 2008, 49(2): 301-310.
  • 8Cheng C H, Chang M H. Shape identification for water-ice interface within the cylindrical capsule in cold storage system by inverse heat transfer method[J]. International Journal of Refrigeration, 2003, 26 (5): 543-550.
  • 9Cheng C H, Chang M H. Shape design for a cylinder with uniform temperature distribution on the outer surface by inverse heat transfer method[J]. International Journal of Heat and Mass Transfer, 2003, 46(1): 101-111.
  • 10Partridge P W, Wrobel L C. An inverse geometry problem for the localization of skin tumours by thermal analysis[J]. Engineering Analysis with Boundary Elements, 2007, 31(10): 803-811.

二级参考文献78

共引文献332

同被引文献30

引证文献3

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部