期刊文献+

光滑化非线性互补约束的节点类型转换模型 被引量:2

Bus Type Switch Model Based on Smooth Nonlinear Complementarity Constraints
下载PDF
导出
摘要 提出一种用于描述潮流计算中PV-PQ节点转换逻辑的光滑化互补约束模型。电压控制节点的无功出力达到限制值后会失去对受控节点的控制,其转换关系能采用非线性互补约束模型描述。通过对互补约束条件的光滑化处理,并引入到潮流计算模型中,在迭代计算中可直接对节点类型进行判断并转换,将避免频繁的节点类型转换,显著提高计算的效率并得到正确的潮流结果。另外在连续潮流中考虑互补约束方程后,在临界点附近通过潮流不平衡量快速确定导致潮流不收敛的关键方程,从而有效识别出临界点类型和关键约束转换节点。通过对多个系统的仿真验证所提模型的有效性。 A bus type switch model for power flow computation based on smooth nonlinear complementarity constraints (NCC) equations was proposed in this paper. The PV bus voltage becomes uncontrollable when the output at the bus reaches the reactive power limit. By introducing the NCC model, the bus PV-PQ type switching logic was formulated as smooth NCC equations and incorporated into the power flow model. The bus type can be directly judged and switched within the iteration to avoid continually switching of the bus type, and obtain an accurate result and belter computation efficiency. In the solution of continuing power flow under consideration of NCC equations, the critical equations which induce power flow equation singularity can be quickly determined from the mismatch of power flow equations, so the critical point type and critical constraints switch bus can be correctly identified. The numerical results for several systems show that the proposed method is effective.
出处 《中国电机工程学报》 EI CSCD 北大核心 2008年第31期29-34,共6页 Proceedings of the CSEE
基金 国家自然科学基金项目(50337010) 广东省自然科学基金项目(06025630)。~~
关键词 节点转换 连续潮流 光滑化互补约束 潮流计算 电压稳定 bus switch: continuation power flow: smoothcomplementarity constraints: power flow computation: voltagestability
  • 相关文献

参考文献20

  • 1Cutsem T V, Vournas C. Voltage stability of electric power systems [M]. MA: Kluwer, I998: 137-143.
  • 2Taylor C W. Power system voltage stability. EPRI power system engineering series[M]. New York: McGraw-Hill, 1994: 21-25.
  • 3Chiang H D, FlueckAJ, Shah K S, et al. CPFLOW: a practical tool for tracing power system steady-state stationary behavior due to load and generation variations[J]. IEEE Trans. on Power Systems, 1995, 10(2):623-634.
  • 4Ajjarapu V, Colin C. The continuation power flow: a tool for steady state voltage stability analysis[J]. IEEE Trans. on Power Systems, 1992, 7(1): 416-423.
  • 5赵晋泉,江晓东,张伯明.潮流计算中PV-PQ节点转换逻辑的研究[J].中国电机工程学报,2005,25(1):54-59. 被引量:45
  • 6Rosehart W, Roman C, Schellenberg A. Optimal power flow with complementarity constraints[J]. IEEE Trans. on Power Systems, 2005, 20(2): 813-822.
  • 7Roman C, Rosehart W. Complemenarity model for load tap changing transformers in stability based OPF problem[J]. Electric Power Systems Research, 2006, 76(6): 592-599.
  • 8Motto A L, Galiana F D. Coordination in markets with nonconvexities as a mathematical program with equilibrium constraints-Part Ⅰ and Ⅱ [J]. IEEE Trans. on Power Systems, 2004, 19(1): 308-338.
  • 9Fletcher R, Leyffer S. Solving mathematical programs with complementarity constraints as nonlinear programs[J]. Optimization Methods and Software, 2004, 19(1): 15-40.
  • 10Scholtes S. Convergence properties of regularization schemes for mathematical programs with complementarity constraints[J]. SIAM of Journal on Optimization, 2001, 11(4): 918-936.

二级参考文献46

  • 1曾江,韩祯祥.电压稳定临界点的直接计算法[J].清华大学学报(自然科学版),1997,37(S1):94-97. 被引量:11
  • 2胡彩娥.应用基于连续潮流算法的遗传算法进行静态电压稳定分析[J].电网技术,2004,28(15):57-61. 被引量:43
  • 3邱家驹,韩祯祥,江晓东.潮流计算中的PI_f节点[J].中国电机工程学报,1995,15(5):323-327. 被引量:23
  • 4[2]Wang X,Song Y H,Lu Q.A coordinated real-time optimal dispatch method for unbundled electricity markets[J].IEEE Trans on Power Systems.2002,17 (2):482-490
  • 5[4]Sun D I,Ashley B,Brewer B,et al.Optimal power flow by Newton approach [J].IEEE Trans On PAS,1984,103 (10):2864-2880.
  • 6[5]Maria G A,Findlay J A.A Newton optimal power flow program for Ontario hydro EMS [J].IEEE Trans on Power Systems,1987,2 (3):576-584.
  • 7[6]Chang S K,Marks G E,Kato K.Optimal real-time voltage control [J].IEEE Trans on Power Systems,1990,5 (3):750-758.
  • 8[8]Torres G L,Quintana V H,Optimal power flow by a nonlinear complementarity method [J].IEEE Trans on Power Systems,2000,15 (3):1028-1033.
  • 9[9]Conejo A J,Nogales F J,Frieto F J.A decomposition procedure based on approximate Newton direction [J].Math.Program.2002,93:495-515.
  • 10[10]Harker P T,Pang J S.Finite-dimensional variational inequality and noniinear complementarity problems:Asurvey of theory,algorithms and applications [J].Mathematical Programming,1990,48:161-220.

共引文献257

同被引文献25

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部