期刊文献+

基于AQ覆盖框架的蚁群规则集学习算法 被引量:1

Ant colony rule set learning algorithm based on AQ covering frame
下载PDF
导出
摘要 针对规则集学习问题,提出一种遵循典型AQ覆盖算法框架(AQ Covering Algorithm)的蚁群规则集学习算法(Ant-AQ)。在Ant-AQ算法中,AQ覆盖框架中的柱状搜索特化过程被蚁群搜索特化过程替代,从某种程度上减少了陷入局优的情况。在对照测试中,Ant-AQ算法分别和已有的经典规则集学习算法(CN2、AQ-15)以及R.S.Parpinelli等提出的另一种基于蚁群优化的规则学习算法Ant-Miner在若干典型规则学习问题数据集上进行了比较。实验结果表明:首先,Ant-AQ算法在总体性能比较上要优于经典规则学习算法,其次,Ant-AQ算法在预测准确度这样关键的评价指标上优于Ant-Miner算法。 A novel ant colony rule set learning algorithm(Ant-AQ) is presented based on the combination of AQ covering frame and ant colony optimization.The ant colony optimization substitutes for the beam search in the specification procedure of AQ coveting frame.This strategy can reduce occurrence of convergence to solutions coding local optima for evaluating Ant-AQ,the algorithm is applied to several typical rule set learning problems and compared to the classical algorithms for rule set learning (CN2,AQ-15) and another rule set learning algorithms based on ACO called Ant-Miner which proposed by R.S.Parpinelli et.al. The experiment results show,first,the algorithm has much better overall performance than classical algorithms mentioned above, and second, the algorithm has advantages, over Ant-Miner on the key criteria of prediction accuracy.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第31期67-71,共5页 Computer Engineering and Applications
基金 浙江省自然科学基金No.Y106080 宁波市自然科学基金No.2008A610030 宁波市IT产业应用型人才培养基地课题(No.JD070510) 宁波城市学院科研课题(No.2008-13)~~
关键词 规则集学习 AQ覆盖算法 蚁群优化 蚁群规则学习算法 rule set learning AQ covering algorithm ant colony optimization ant colony rule set learning
  • 相关文献

参考文献10

  • 1Wojtusiak J.AQ21 User's Guide[R].the Machine Learning and Inference Laboratory,MLI 04-3,George Mason University,Fairfax,VA, 2004-09.
  • 2Clark P,Niblett T.The CN2 induction algorithm[J].Machine Learning, 1989,3 : 261-283.
  • 3Parpinelli R S,Lopes H S,Freitas A A.Data mining with an ant colony optimization algorithm[J].IEEE Transactions on Evolutionary Computation, 2002,6(4) : 321-332.
  • 4de Campos L M,Huete J F.Approximating causal orderings for Bayesian networks using genetic algorithms and sumulated annealing[C]//Proceeding of the Eight IPMU Conference,2000:333-340.
  • 5Handl J,Knowles J.Ant-based clustering and topographic mapping, TR/IRIDIA/2004-009[R].IRIDIA, 2004-05.
  • 6Blum C,Socha K.Training feed-forward neural networks with ant colony optimization: an application to pattern classification,TR/IRIDIA/2005-038[R].IRIDIA, 2005-12.
  • 7Dorigo M,Maniezzo V,Colorni A.The ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man, and Cybernetics Part B, 1996,26( 1 ) :29-42.
  • 8Newman D J,Hettich S,Blake C L,et al.UCI repository of machine learning databases[D/OL].Irvine,CA:University of California,Department of Information and Computer Science,1998.http:// www.ics.uci.edu/.
  • 9Konavi R,John G,Long R,et aI.MLC++:a machine learning library in C++ in tools with artificial intelligence[M].[S.l.]:IEEE Computer Society Press, 1994:740-743.
  • 10Quinlan J R.Induction of decision trees[J].Maehine Learning, 1986,1 (1):81-106.

同被引文献17

  • 1颜晨阳,张友鹏,熊伟清.一种新的蚁群优化算法信息素更新策略及其性能分析[J].计算机应用研究,2007,24(7):86-88. 被引量:2
  • 2Raedt L D.Inductive logic programming[M]//Encyclopedia of machine learning.New York:Springer,2010:529-537.
  • 3Quinlan J R,Cameron-Jones R M.Induction of logic programs:FOIL and related systems[J].New Generation Computing,1995,13:287-312.
  • 4D?eroski S.Handling imperfect data in inductive logic programming[C]//Proceedings of the 4th Scandinavian Conference on Artificial intelligence.Amsterdam:IOS Press,1993:111-125.
  • 5Landwehr N,Kersting K,Raedt L D.n FOIL:integrating Naive Bayes and FOIL[J].Journal of Machine Learning Research,2007,8:481-507.
  • 6Landwehr N,Passerini A,Raedt L D,et al.Fast learning of relational kernels[J].Machine Learning,2010,78(3):305-342.
  • 7Muggleton S.Inverse entailment and Progol[J].New Generation Computing,Special Issue on Inductive Logic Programming,1995,13(3/4):245-286.
  • 8Srinivasan A.The aleph manual[EB/OL].(2007-03-13)[2015-01-03].http://www.cs.ox.ac.uk/activities/machlearn/Aleph/.
  • 9Nienhuys-Cheng S,Wolf R.Foundations of inductive logic programming[M].[S.l.]:Springer-Verlag,1997:233-234.
  • 10Dorigo M,Maniezzo V,Colorni A.The ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics Part B,1996,26(1):29-41.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部