期刊文献+

基于改进RBF神经网络的入侵检测研究 被引量:6

Research of intrusion detection based on improved RBF neural network
下载PDF
导出
摘要 近年来,神经网络技术在入侵检测中得到了广泛应用,其中最具代表的是BP神经网络,但其本身所具有的局部极小性质限制了检测性能的提高。RBF神经网络在一定程度上克服了BP神经网络存在的问题,但如何确定一个合适的RBF网络隐层神经元中心个数又是保证其应用效果的关键之一。因此,将基于熵的模糊聚类和RBF神经网络相结合,提出了基于EFC的改进RBF神经网络算法,并将该方法应用于入侵检测研究。实验表明,该算法可以获得满意的性能。 In recent years,the neural network technology obtained the widespread application in the Intrusion,what most has represents is the BP neural network,but the local minimum nature of itself has limited the detection performance enhancement.The RBF network can solve the BP neural network existence question.But how to determine an appropriate RBF network hidden centers is also a difficult problem.ln view of the above question,by combining Entropy-based Fuzzy Clustering(EFC) and neural network,this paper puts forward an improved RBF algorithm based on Entropy-based Fuzzy Clustering and applies this algorithm to intrusion detection.The experiment shows that algorithm can gains satisfying performances.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第31期135-138,共4页 Computer Engineering and Applications
基金 河北省自然科学基金No.F200800646 河北省教育厅自然科学基金重点项目(No.ZH2006006) 河北省教育厅基金资助项目(No.2005214 No.Z2007442)~~
关键词 入侵检测 模糊聚类 径向基函数神经网络 intrusion detection entropy fuzzy clustering Radial Basis Function(RBF) neural network
  • 相关文献

参考文献15

  • 1卿斯汉,蒋建春,马恒太,文伟平,刘雪飞.入侵检测技术研究综述[J].通信学报,2004,25(7):19-29. 被引量:234
  • 2Rao X,Dong C X,Yang S Q.Statistic learning and intrusion detection[C]//9th International Conference on Rough Sets,Fuzzy Sets, Data Mining, and Granular Computing, 2003,652-659.
  • 3Yan, Huai-Zhi, Hu, Chang-Zhen, Tan, Hui-Min.Intelligent Intrusion Detection System Model Using Rough Neural Network[J].Wuhan University Journal of Natural Sciences,2005,10(1):119-122. 被引量:4
  • 4Debar H,Becker M,Siboni D.A neural network compnent for an intrusion detections system[C]//IEEE Symposium on Security and Privacy.Okland: IEEE Computer Society, 1992 : 256-266.
  • 5Tan K.The application of neural networks to UNIX computer seeurity[C]//Proceeding of the IEEE International Conference on Neural Networks, 1995 : 476-481.
  • 6Ghosh A K,Schwartzbard A,Schatz M.Learning program behavior profiles for intrusion detection[C]//Proc 1st USENIX Workshop on Intrusion Detection and Network Monitoring,Santa Clara,CA,1999: 51-62.
  • 7Zhang Z,Li J,Manikopoulos C N,et al.HIDE:a hierarchical network intrusion detection system using statistical preprocessing and neural network classification[C]//Proceedings of the 2001 IEEE Workshop on Information Assurance and Security United States Military Academy,West Point,2001:85-90.
  • 8Chang R I,Lai L B,Su W D,et al.Intrusion detection by backpropagation neural networks with sample-query and attributequery[J].International Journal of Computational Intelligence Research, 2007,3 (1) : 6-10.
  • 9王磊,廖晓峰.基于改进BP算法的入侵检测神经网络方法[J].计算机工程与应用,2004,40(31):69-71. 被引量:11
  • 10陈海,丁邦旭,王炜立.基于神经网络LMBP算法的入侵检测方法[J].计算机应用与软件,2007,24(8):183-185. 被引量:4

二级参考文献54

  • 1张辉,杨华兵,曹立威,熊家军.神经网络应用于入侵检测的研究[J].空军雷达学院学报,2002,16(3):31-33. 被引量:1
  • 2LEE W,STOLFO S,MOK K. A data mining framework for adaptive intrusion detection[EB/OL]. http://www.cs.columbia.edu/~sal/ hpapers/framework.ps.gz.
  • 3LEE W, STOLFO S J, MOK K. Algorithms for mining system audit data[EB/OL]. http://citeseer.ist.psu.edu/lee99algorithms.html. 1999.
  • 4KRUEGEL C, TOTH T, KIRDA E.Service specific anomaly detection for network intrusion detection[A]. Proceedings of the 2002 ACM Symposium on Applied Computing[C]. Madrid, Spain, 2002. 201-208.
  • 5LIAO Y, VEMURI V R. Use of text categorization techniques for intrusion detection[A]. 11th USENIX Security Symposium[C]. San Francisco, CA, 2002.
  • 6An extensible stateful intrusion detection system[EB/OL]. http://www.cs.ucsb.edu/~kemm/NetSTAT/doc/index.html.
  • 7ILGUN K. USTAT: A Real-Time Intrusion Detection System for UNIX[D]. Computer Science Dep University of California Santa Barbara, 1992.
  • 8The open source network intrusion detection system [EB/OL]. http://www.snort.org/.
  • 9KO C, FINK G, LEVITT K. Automated detection of vulnerabilities in privileged programs by execution monitoring[A]. Proceedings of the 10th Annual Computer Security Applications Conference [C]. Orlando, FL: IEEE Computer Society Press, 1994. 134-144.
  • 10Computer security & other applications of immunology[EB/OL]. http://www.cs.unm.edu/~forrest/isa_papers.htm.

共引文献249

同被引文献25

  • 1包潘晴,杨明福.基于KPCA和SVM的网络入侵检测[J].计算机应用与软件,2006,23(2):125-127. 被引量:19
  • 2FredricMHam,IvicaKostanic.神经计算原理[M].叶世伟,王嗨娟,译.北京:机械工业出版社,2007,120-123.
  • 3Deng H,Zeng P-A,Agrawal D P.An Unsupervised Network Anomaly Detection System Using Random Projection Technique[C] //Proceedings of the 2003 International Workshop on Cryptology and Network Security.2003:593-598.
  • 4Du H,Jiao L,Wang S.Clonal Operator and Antibody Clone Algorithms[J].Proceedings of the Firs! International Conference on Machine Learning and Cybernetics,2002,4 (11):506-510.
  • 5Lawniczak A T, Wu H, Di Stefan B N. Detection ofanomalous packet traffic via entropy[ C ]//Proceedings of the 22nd IEEE Canadian Con- ference on Elec-trical and. Computer Engineering, Canada, 2009 : 137 - 141.
  • 6KDD99. KDD99 Cup Dataset [ OL]. [ 2006-10-10]. http://kdd, ics uci. edu/databases/kddcup99/kddcup99, html.
  • 7Fredric M.Ham;Ivica Kostanic.神经计算原理[M]{H}北京:机械工业出版社,2007.
  • 8葛哲学;孙志强.神经网络理论与MATLAB R2007[M]{H}北京:电子工业出版社,2007.
  • 9党长青,刘洁,牛分中.基于Boosting RBF神经网络的入侵检测[J].计算机工程与应用,2008,44(15):118-120. 被引量:3
  • 10孙晓艳,郑淑丽,沈洪伟.优化的RBF神经网络在入侵检测中的应用[J].合肥工业大学学报(自然科学版),2008,31(11):1794-1797. 被引量:6

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部