期刊文献+

新颖人脸检测的核方法 被引量:1

Kernel method for novelty face detection
下载PDF
导出
摘要 核主成分分析(kernel PCA)是PCA的非线性扩展。该研究将kernel PCA应用于新颖人脸检测。作为训练数据的人脸图像被映射到高维特征空间。在特征空间中,kernel PCA抽取数据分布的主成分,构成主子空间。在该子空间中,通过优化方法寻找包含训练数据的最小超平面,作为新颖检测的决策界面。该新方法在ORL人脸图像库的数据集中进行了实验,测试精度较线性PCA方法有所提高。 Kernel Principal Component Analysis(kernel PCA) is a non-linear extension of PCA.This paper introduces and investigates the use of kernel PCA for novel face detection.The face images for training data are mapped into a high-dimensional feature space.In this feature space,the principal components of the data distribution are extracted using kernel PCA to construct the main subspace.Then in the subspace,the hypersphere containing almost training data with minimum radius is found as decision hypersphere for novel detection.The experiments are implemented for proposed method using the ORL face database.The results reveal that the detection precision has a certain improvement compared with linear PCA.
作者 谢勤岚 陈红
出处 《计算机工程与应用》 CSCD 北大核心 2008年第31期182-183,194,共3页 Computer Engineering and Applications
基金 国家自然科学基金No.40774089 中南民族大学自然科学基金No.YZY04009~~
关键词 核方法 新颖检测 主成分分析 人脸检测 kernel method novelty detection Principal Component Analysis ( PCA ) face detection
  • 相关文献

参考文献10

  • 1Li S Z,Jain A K.Handbook of face recognition[M].New York:Springer, 2004:1-15.
  • 2Markou M, Singh S.Novelty detection : a review, part 1 : statistical approaches[J].Signal Processing, 2003,83( 12 ) : 2481-2497.
  • 3Markou M,Singh S.Novelty detection:a review,part 2: neural network based approaches[J].Signal Processing,2003,83(12):2499- 2521.
  • 4Scholkopf B,Smola A J.Leaming with kemels[M].Cambridge,MA: MIT Press,2002:201-220.
  • 5Scholkopf B,Williamson R C,Smola A J,et al.Support vector method for novelty detection[J].Advances in Neural Information Processing Systems,2000,12:582-588.
  • 6Scholkopf B,Platt J C,Shawe-Taylor J,et al.Estimating the support of a high-dimensional distribution[J].Neural Computation,2001,13 : 1443-1472.
  • 7Tax D M J,Duin R P W.Support vector domain description[J].Pattern Recognition Letters, 1999,20:1191-1199.
  • 8Tax D M J,Juszczak P.Kernel whitening for one-class classification[C]//LNCS 2388 :Pro of 1st IWPR with SVM,2002:40-52.
  • 9Rasmussen C E,Williams C K I.Gaussian processes for machine learning[M].[S.l.] : MIT Press, 2006.
  • 10Shawe T J,Cristianini N.Kemel methods for pattern analysis[M]. [S.l.]:China Machine Press,2004.

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部