期刊文献+

框架小波的可扩展性(英文)

On the extendability of frame wavelets
下载PDF
导出
摘要 规范紧框架小波的可扩展性是超小波理论的一个重要方面.阐述了规范紧框架小波的维数函数的定义和相关性质.作为维数函数的应用,更进一步地研究了框架小波的可扩展性,得到了一个规范紧框架小波可扩展成任何长度超小的充分条件.另外,给出一个例子和两个推论. The extendability of Normalized Tight Frame Wavelets(NTFW) plays an important role in the super-wavelets theory. The dimension function of NTFW was characterized by showing its definition and properties. As an application of dimension function, the extendability of frame wavelets were investigated,then a suffcient condition concerning a NTFW to be extendable to super-wavelets of any length was obtained. In addition, an example and two eorollaries are also given.
出处 《纺织高校基础科学学报》 CAS 2008年第3期289-294,共6页 Basic Sciences Journal of Textile Universities
基金 the Natural Science Foundation of China(10571113)
关键词 规范紧框架小波 维数函数 超小波 normalized tight frame wavelets dimension function super-wavelets
  • 相关文献

参考文献10

  • 1BALAN R. Density and redundancy of the noncoherent weylheisenberg superframe[J].Journal of Contemporary Mathematics, 1999, 247 : 29-41.
  • 2HAN D, LARSON D. Frames,bases and group representations[J].Memoirs of the American Mathematical Society, 2000,147 (697) : 1-88.
  • 3GU Qing, HAN Deguang. Super-wavelets and decomposable wavelet frames[J]. The Journal of Fourier Analysis and Applications, 2005,11 (6) : 683-696.
  • 4HERNALDEZ E,WEISS G. A first course on wavelets[M]. Boca Raton:CRC Press, 1996.
  • 5DAI X, DIAO Y,GU Q. On super-wavelets[J]. Operator Theory: Advances and Applications, 2004,149: 153-165.
  • 6BOWNIK M, RZESZOTNIKZ, SPEGLE D. A characterization of dimension functions of wavelets[J].Applied and Computational Harmonic Analysis, 2001,10 : 71-92.
  • 7PAPADAKIS M. On the dimension functions of orthonormal bases[J].Proceeding of the American Mathematical Society,2000,128:2 043-2 049.
  • 8DAI X,LARSON D,SPEEGLE D. Wavelet sets in R[J].The Journal of Fourier Analysis and Applications, 1997,3 (4) :451-456.
  • 9De BOOR C, De VORE R, RON A. The structure of finitely generated shift-invariant spaces in L2 (Rd) [J]. Journal of Functional Analysis,1994,119(1) :37-78.
  • 10WEBER E. Orthogonal frames of translates[J]. Applied and Computational Harmonic Analysis, 2004,17:69-90.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部