摘要
提出寻求关键特征值的指标,给出发生Hopf分岔的初始负荷增长方向,由此保证求取的超平面的法向量和Hopf分岔的参数空间相对应。也提出了在参数空间下求取系统发生最近Hopf分岔点的迭代算法,使用该算法能得到趋近该点的最危险负荷增长方式。在每步迭代中,求取参数空间下Hopf分岔超平面的垂直向量,得到新的负荷增长方式,使之达到最近的Hopf分岔点。采用IEEE标准14节点系统及IEEE-30节点系统进行仿真计算,验证了该算法的有效性和收敛性。
An effective iterative method to find the closest Hopf bifurcation point and the corresponding load increase pattern was proposed by the authors. A normal vector to Hopf bifurcation hypersurface was calculated at each iterative step to find the successively corrected load increase pattern. An index for critical eigenvalue selection was also presented, through which the initial load increase pattern was determined. The closest stability load margin was aimed at assessing the system robustness to system oscillation instabilities. Simulation result obtained on the IEEE- 14 and IEEE - 30 buses system illustrates the validity of the proposed method with good convergence. The proposed algorithm is an valuable contribution in power system oscillatory instability study.
出处
《华北电力大学学报(自然科学版)》
CAS
北大核心
2008年第5期1-5,共5页
Journal of North China Electric Power University:Natural Science Edition
关键词
HOPF分岔
参数空间
超平面
关键特征值
Hopf bifurcation
parameter space
hypersurface
critical eigenvalue