期刊文献+

电压稳定控制参数空间下最近Hopf分岔边界的计算

Closest Hopf bifurcation boundary in control parameter space
下载PDF
导出
摘要 提出寻求关键特征值的指标,给出发生Hopf分岔的初始负荷增长方向,由此保证求取的超平面的法向量和Hopf分岔的参数空间相对应。也提出了在参数空间下求取系统发生最近Hopf分岔点的迭代算法,使用该算法能得到趋近该点的最危险负荷增长方式。在每步迭代中,求取参数空间下Hopf分岔超平面的垂直向量,得到新的负荷增长方式,使之达到最近的Hopf分岔点。采用IEEE标准14节点系统及IEEE-30节点系统进行仿真计算,验证了该算法的有效性和收敛性。 An effective iterative method to find the closest Hopf bifurcation point and the corresponding load increase pattern was proposed by the authors. A normal vector to Hopf bifurcation hypersurface was calculated at each iterative step to find the successively corrected load increase pattern. An index for critical eigenvalue selection was also presented, through which the initial load increase pattern was determined. The closest stability load margin was aimed at assessing the system robustness to system oscillation instabilities. Simulation result obtained on the IEEE- 14 and IEEE - 30 buses system illustrates the validity of the proposed method with good convergence. The proposed algorithm is an valuable contribution in power system oscillatory instability study.
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2008年第5期1-5,共5页 Journal of North China Electric Power University:Natural Science Edition
关键词 HOPF分岔 参数空间 超平面 关键特征值 Hopf bifurcation parameter space hypersurface critical eigenvalue
  • 相关文献

参考文献14

  • 1A C Zambroni de Souza, B I Lima Lopes. Saddle-node index as bounding value for Hopf bifurcations detection [J]. IEE Proc Generation, Transmission and Distribution, 152 (5) : 737- 742.
  • 2Tomim M A, Zambroni de Souza A C. Identification of Hopf bifurcation in power system susceptible to subsynchronous resonant [C]. Bologna, Italy: Proc. Powertech, 2003: 7.
  • 3Yang LiYun, Tang Yun. An improved version of the singularity-Induced bifurcation theorem [J]. IEEE Trans on Automatic Control, 2001, 46 (9): 1483- 1486.
  • 4Wieslan Marszalek, Zdzislan W Trzaska. Singularity-induced bifurcation in electrical power systems [J]. IEEE Trans on Power Systems, 2005, 20 ( 1 ) : 312 - 320.
  • 5Sergio Comes Jr, Nelson Martins. Computing small-signal stability boundaries for large-scale power systems[J]. IEEE Trans on Power Systems, 2003, 18 (2): 747 - 752.
  • 6Zhou Y, Wen X, Venkatararnana A. Identification and tracing of oscillatory stability margin boundary [C]. IEEE Power Engineering Society General Meeting, 2003, 4: 13-17.
  • 7Sergio Comes Jr, Nelson Martins. Computing small-signal stability boundaries for large-scale power systems [J]. IEEE Trans. on Power Systems, 2003, 18 (2): 747 - 752.
  • 8Peng Li, Yixin Yu, Hongjie Jia, A study on boundary of small disturbance stability region [C]. International Conference on Power System Technology, 2002, 2: 1228- 1232.
  • 9Yuri V Makarov. A general method for small signal stability analysis [ J ]. IEEE Trans on Power System 1998, 53 (3): 979-985.
  • 10I Dobson. An iterative method to compute a closest saddle node or Hopf bifurcation instability in multidimensional parameter space [C]. IEEE International Symposium on Circuits and Systems, 1992, (5): 2513 -2516.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部