期刊文献+

神经网络和模糊逻辑在农业机械制造中的应用

The Application of the Dynamicnn and Fuzzy Logic Makes in the Farm Machinery Manufacturing Technique
下载PDF
导出
摘要 农业机械制造技术与一般机械制造技术相比,具有特殊性。如今大多数农机企业的技术跟不上先进机械制造技术的发展,农业机械制造技术比较落后。为此,将动态神经网络和模糊逻辑技术应用在农业机械加工制造中,能够很好地预测和控制工件的尺寸与形状,大大提高了加工精度。为此,以农业机械的轴类零件为例,建立了纵向磨削的Elman动态神经网络尺寸预测模型,采用论域自调整策略和模糊自适应控制理论,建立了纵向磨削的自适应控制模型,选择工作台的进给速度作为控制变量。仿真和实验结果表明,所建立的神经网络尺寸预测模型和模糊自适应控制模型是正确的。 The farm machinery manufacturing technique compare with general machinery manufacturing technique, has special. Most farm machinery enterprises can not keep up with an advanced technical development of the machine manufacturing now, the farm machinery manufacturing technique relatively falls behind. Applies DYNAMIC NN and FUZZY LOGIC to the farm machinery manufacturing technique, can predict nicely the size and the shape of the work piece with control, and raised to process accuracy consumedly. The paper takes the axletree parts of farm machinery as an example, a size intelligent prediction control model based on the dynamic Elman neural network is constructed. The strategy of self- adapt universe of discourse is introduced to the fuzzy control model, which can self - adapt and adjust the universe of dis- course in the fuzzy control. Simulation and experiment verify that the developed prediction control model is feasible and has high prediction and control precision.
出处 《农机化研究》 北大核心 2008年第12期176-180,共5页 Journal of Agricultural Mechanization Research
关键词 农业机械 精加工 尺寸预测 尺寸控制 farm machinery finish machining size prediction size control
  • 相关文献

参考文献9

  • 1黄玉祥,朱瑞祥,单士睿,吴峰,侯善坤.现代农业机械制造技术及发展[J].农机化研究,2005,27(5):33-34. 被引量:12
  • 2Hyhn -scung choi, jang - Ryeol Seo, Sun - kyulee. Machining error compensation of extenl cylindrical grinding using a thermally actuated rest [ J ]. Journal of Materials Processing Technology ,2002,127:280 - 285.
  • 3M wect, N Hennes, A Schulz. Dynamic Behaviour of cylindrical traverse grinding processes [ J ]. Annals of the CIRP , 2001,50 : 1.
  • 4Yong sheng Gao. Experimental validation of a dynamic workpiece steady control method for traverse grinding[ J ]. Journal of Manufacturing Sience and Engineering, 1998,120:236- 245.
  • 5Pawel Lezanski. An intelligent system for grinding wheel condition monitoring [ J ]. Journal of Materials Processing Technology, 2001,109:258 - 263.
  • 6Azouzi R. On - line prediction of surface finish and deviation in turning using geneural nerwork base sensor fusion [ J ]. Int. Mach. Tools Manufact, 1997,37 ( 9 ).
  • 7Albert J Shiha, Nien L Lee. Precision cylindrical face grinding [ J ]. Precision Engineering, 1999, 23 : 177 - 184.
  • 8Arup Kumar Nandi, Dilip Kumar Pratihar. Design of a genetic- fuzzy system to predict surface finish and power requirement in grinding [ J ]. Fuzzy Sets and Systems, 2004, 148:487 - 504.
  • 9Manuel Duarte, lejandro Sua? rez, Danilo Bassi. Control of grinding plants using predictive multivariable neural control[ J]. Powder Technology,2001,115 : 193 - 206.

二级参考文献5

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部