期刊文献+

基于改进SMOG模型的目标跟踪算法

Object Tracking with Revised SMOG Model
下载PDF
导出
摘要 空间颜色混合高斯模型(SMOG)是一种优于经典颜色直方图的目标颜色表示模型。然而,SMOG模型初始化时不可避免的会引入背景象素,且极有可能被误选为一个有效的目标分布,严重影响后续的相似性度量,且各目标分布鉴别性能的发挥会受到自身权重的严重制约,当背景中出现与目标颜色相似的干扰物体时,算法的跟踪准确性仍会有所降低。针对这些不足,提出了一种改进的SMOG模型,通过衡量背景与目标分布在空间颜色域上的联合距离来剔除误引入的背景分布,同时将联合距离作为目标分布鉴别能力高低的一种度量,引人到相似性度量函数中,并在跟踪过程中根据局部背景的变化动态的进行更新,充分根据每个高斯分布的鉴别性能调整其匹配权重。实验证明,改进后的SMOG模型能有效提高目标跟踪的鲁棒性。 Spatial-color Mixture of Gaussians (SMOG) is a new object appearance model which has been proven to be superior to classic color histogram appearance model. However,in the initialization of SMOG,some background pixels are inevitably introduced and more likely selected as an object mode,which often affects the performance of similarity measure,and the weight of each Gaussian mode is restricted by the probability of the pixels belonging to it,when something with similar color appears in the vicinity of the object,the performance of SMOG based tracking algorithm often degenerates. A revised SMOG model was proposed,which could effectively recognize and remove the introduced background modes by calculating the spatial-color joint distance between each Gaussian mode and the object local background,it also considers the joint distance as a confidence of the discriminative power of each mode,and introduces the confidence into the similarity measure function,and dynamically updates these confidences in the tracking process based on changing background,then modifies the weight of each Gaussian mode in similarity measure based on its confidence. Experiment results show that the revised SMOG model can efficiently improve the robustness of tracking.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第20期5471-5475,共5页 Journal of System Simulation
基金 国家自然科学基金项目(60632050 60472060)
关键词 SMOG模型 粒子滤波 目标跟踪 颜色直方图 SMOG model, particle filter, object tracking, color histogram
  • 相关文献

参考文献10

  • 1Comaniciu D, Ramesh V, Meer P. Real-Time Tracking of Non-Rigid Objects Using Mean Shift [C]// IEEE Conference on Computer Vision and Pattern Recognition. USA: IEEE, 2000, 2: 142-149.
  • 2Nummiaro K, Koller-Meier E, Gool L V. An adaptive color based particle filter [J]. Image and Vision Computing (S0262-8865), 2003, 21(1): 99-110.
  • 3Guha P, Mukerjee A, Venkatesh K S. Efficient Occlusion Handling for Multiple Agent Tracking by Reasoning with Surveillance Event Primitives [C]//1EEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance. USA: IEEE, 2005: 49-56.
  • 4Sung-Mo P, Joonwhoan L. Object Tracking in MPEG Compressed Video using Mean-Shift Algorithm. [C]// Proc. of the Joint Conference of the Fourth International Conference on Information, Communications and Signal Processing. USA, 2003, 2:748-752.
  • 5Debeir O, Van P, Ham R, Kiss, Decaestecker C. Tracking of Migrating Ceil Under Phase-Contrast Video Microscopy With Combined Mean-Shift [J]. IEEE Transaction on Medical Imaging (S0278-0062), 2005, 24(6): 687-711.
  • 6Wang H, Suter D, Schindler K. Adaptive Object Tracking Based on an Effective Appearance Filter [J]. IEEE Transactions on Patten Analysis and Machine Intelligence (S0162-8828), 2007, 27(10): 1631-1643.
  • 7Collins R T, Liu Y X, Leordeanu M. Online-selection of Discriminative Tracking Features [J]. IEEE Transactions on Patten Analysis and Machine intelligence (S0162-8828), 2005, 27(10): 1631-1643.
  • 8Zhao Z Y, Collins R. Spatial Divide and Conquer with Motion Cues for Tracking through Clutter [C]// IEEE Computer Society Conference on Computer Vision and Patten Recognition. USA: IEEE, 2006. 1: 570-577.
  • 9Chen D, Yang J. Robust Object Tracking Via Online Dynamic Spatial Bias Appearance Models [J]. IEEE Transactions on Patten Analysis and Machine intelligence (SO 162-8828), 2007, 29(12): 2157-2169.
  • 10Stauffer C, Grimson W E L. Adaptive Background Mixture Model for real time tracking [C]// IEEE Conference on Computer Vision and Patten Recognition. USA: IEEE, 1999: 246-252.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部