期刊文献+

结合先验知识的Bayesian优化算法研究与仿真

Improved Bayesian Optimization Algorithm Incorporated Prior Knowledge
下载PDF
导出
摘要 由于一般优化问题的先验知识很难获取,因此在Bayesian网络学习中结合与利用先验知识一直是一个很难突破的问题。针对Bayesian优化算法(BOA)的特点,对一般优化问题如何发现和利用先验知识进行了分析讨论,把BOA中前一代种群所提供的信息作为先验知识结合到当前代Bayesian网络的学习中,提高了所学习网络的可靠性,从而提高算法的性能。仿真结果表明所提算法比传统BOA具有更强的全局寻优能力。 Since it is difficult to obtain the prior knowledge of general optimization problems,many algorithms of learning Bayesian networks almost do not incorporate or use the prior knowledge of problems. And it is NP-hard to learn the Bayesian networks. According to the characteristics of the Bayesian optimization algorithm (BOA),it was discussed on how to discovery and use prior knowledge in general optimization problems. An improved Bayesian optimization algorithm incorporated prior knowledge was proposed. The information provided by the previous generation was considered as prior knowledge to be incorporated in the Bayesian networks learning. So the reliability of the networks and the performance of the proposed algorithm were improved. Simulation results show that the proposed algorithm achieves a stronger ability in searching the global optima than those of traditional BOA.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第20期5526-5529,共4页 Journal of System Simulation
基金 国家自然科学基金资助项目(60374063)
关键词 先验知识 Bayesian优化算法(BOA) BAYESIAN网络 分布估计算法 prior knowledge, Bayesian Optimization Algorithm (BOA), Bayesian network, estimation of distribution algorithm
  • 相关文献

参考文献10

  • 1R Etxeberria, P Larranaga. Global optimization using Bayesian networks [C]//The 2nd Symposium on Artificial Intelligence, Habana: CIMAF Press, 1999: 332-339.
  • 2Pelikan M, Goldberg D E, Cantu Paz E. BOA: The Bayesian optimization algorithm [C]// Proceedings of the Genetic and Evolutionary Computation Conference. San Mateo: Morgan Kaufrnann Publishers, 1999: 525-532.
  • 3H Muehlenbein, T Mahnig, A O Rodriguez, Schemata, distributions, and graphical models in evolutionary optimization [J]. Journal of Heuristics (S1381-1231), 1999, (5): 215-247.
  • 4J H Holland. Adaptation in natural and artificial systems [M]. Ann Arbor, MI: University of Michigan Press, 1975.
  • 5Q Zhang, H Mublenbein. On the convergence of a class of estimation of distribution algorithms [J]. IEEE Transactions on evolutionary computation (S1089-778X), 2004, 8(2): 127-135,
  • 6J Schwarz, J Ocenasek. The knowledge-based evolutionary algorithm KBOA for hypergraph bisectioning [C]// Proceedings of the Fourth Joint Conference on Knowledge based Sofcware Engineering. Bmo, Czech Republic: lOS Press, 2000: 51-58.
  • 7D Heckerman, D Geiger, D M. Chickering, Learning Bayesian Networks: The combination of knowledge and statistical data [J]. Machine Learning (S0885-6125), 1995, 20(3): 197-243.
  • 8Pelikan M, Sastry K. Fitness inheritance in the Bayesian Optimization Algorithm [C]// Genetic and Evolutionary Computation Conference: GECCO, Heidelberg: Springer Berlin, 2004: 48-59.
  • 9林亚平,杨小林.快速概率分析进化算法及其性能研究[J].电子学报,2001,29(2):178-181. 被引量:6
  • 10殷虎,方兴,王向军.一种基于种群竞争与交流模型的多群进化规划算法[J].系统仿真学报,2005,17(5):1265-1267. 被引量:1

二级参考文献15

  • 1[1]Pelikan.M et al.A surver of optimization by building and using probabilistic models [R].IlliGAL Report No.99018,UIUC,IlliGAL Genetic Algorithm Laboratory,1999.
  • 2[2]Baluia S,Davies S .Using optimal dependency-trees for combinatorial optimization learning the structure of the search space [A].Proc.of the 14th International Conference on Machine Learning [C],Morgan Kaufmann,1997:30-38.
  • 3[3]Baluia S.Population-based incremental learning:a method for integrating genetic search based function optimization and competitive learning [R].CMU Technical Report No.CMU-CS-94-163,1994.
  • 4[4]Pelikan M.The bivariate marginal distribution algorithm [A].Advanced in Soft Computing-Engineering Design and Manufacturing [C].London:Springer-Verlag,1998:521-535.
  • 5[5]Goldberg D E.A meditation on the application of genetic algorithms [R].IlliGAL Report No.98003,UIUC,IlliGAL Genetic Algorithm Laboratory,1998.
  • 6[6]-Harik G.Goldberg D E.Linkage learning [A] .Foundations of Genetic Algorithms 4 [C].1996:247-262.
  • 7[7]Heckerman D.A Tutorial on learning with bayesian networks,microsoft Research Advanced Technology Division [R].Microsoft Technical Report No.MSR-TR-95-06,1995.
  • 8[8]Holland J.H.Adaptation in Natural and Artificial Systems [M].Ann Arbor,MI.Univ.Michigan Press,1975.
  • 9[9]Harik G.Linkage learning via probabilistic modeling in the ECGA [R].IlliGAL Report No.99010,UIUC,IlliGAL Genetic Algorithm Laboratory,1999.
  • 10[10]Muehlenbein H.The equation for response to selection and its use for prediction [J].Evolutionaray Computation,1997:5(3):303-346.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部