期刊文献+

基于最大差异延展算法的Web资源描述算法

Algorithm for Web Resource Description Based on Maximum Variance Unfolding
下载PDF
导出
摘要 针对虚拟计算环境下Web资源特性的描述问题,提出资源空间模型,采用流形学习的方法提取Web资源特征。首先根据资源空间模型,有效地将Web资源抽象为高维空间中的数据集;然后,采用流形学习中的最大差异延展算法。此方法不仅能有效地提取Web资源的特征,而且能够挖掘隐含在Web资源内部的本征信息;此时,描述Web资源特征的数据位于低维空间,有利于资源的进一步处理。基于最大差异延展算法的Web资源描述方法有效地解决了Web资源的描述问题。通过仿真实验证明了此方法的有效性。 Resource space model was proposed and manifold learning approach was applied to solve the problem of Web resource feature description in virtual computing environment. Firstly,Web resources are translated into a data set in high dimensional space by applying resource space model effectively. Then features of the resources are extracted by employing a manifold learning algorithm-Maximum Variance Unfolding. It can not only efficiently extract the features of Web resources,but also can discover the latent information. Since representations of Web resources are now in a low dimensional space,it is of great advantage for the further processing of resources. Simulated experiments illustrate the validity of proposed method.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第20期5553-5557,共5页 Journal of System Simulation
基金 "九七三"重点基础研究发展规划项目(2005CB321800) 国家自然科学基金(60673090)
关键词 Web资源描述 资源空间模型 流形学习 维数约减 最大差异延展算法 Web resource description, resource space model, manifold learning, dimensionality reduction, maximum variance unfolding
  • 相关文献

参考文献3

二级参考文献30

  • 1Wold S,Esbensen K,Gelasi E Principle Components Analysis[J].Chemometrics and Intelligent Laboratory Systems, 1987, 12(2):37-46.
  • 2Dunia R, Qin S J. Identification of Faulty Sensors Using Principle Components Analysis [J]. American Institute of Chemical Engineers. AIChE Journal, 1996, 42(10): 2797-2812.
  • 3De Castro L N, Von Zuben F J. The clonal selection algorithm with engineering applications[A]. In Whitley D., Goldber D., Cantu-Paz(eds.). Proceedings of the Genetic and Evolutionary Computation Conference(GECCO'00)[C]. San Francisco: Morgan Kaufmann Publishers, 2000.36-43.
  • 4Hunt J E, Cooke D E. Learning using an artificial immune system[J]. Journal of Network and Computer Applications. I996, I9(2):189-212.
  • 5Fan Youping. Research on theory and approach of reconfigurable intelligent fault diagnosis system and its application[D] Ph.D.Dissertation. Chongqing: Chongqing University, 2003.
  • 6Ma Xiaoxiao. Machine Learning in Intelligent Fault Diagnosis[D].Ph.D. Dissertation. Chongqing: Chongqing University, 2002.
  • 7Mcavoy T J, Ye N. Base Control for the Tennessee Eastman Problem [J]. Computers and Chemical Engineering, 1994, 18(5):383-413.
  • 8Downs J J, Vogel E E A Plant-wide Industrial Control Problem [J].Computers and Chemical Engineering, 1993, 17(3): 245-255.
  • 9Ricker N L. Decentralized Control of the Tennessee Eastman Challenge Process [J]. Journal of Process Control, 1996, 6(4):205 -221.
  • 10Ken Lang. Newsweeder: Learning to filter net news. In International Conference on Machine Learning (ICML), 1995, pp.331-339.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部