摘要
针对虚拟计算环境下Web资源特性的描述问题,提出资源空间模型,采用流形学习的方法提取Web资源特征。首先根据资源空间模型,有效地将Web资源抽象为高维空间中的数据集;然后,采用流形学习中的最大差异延展算法。此方法不仅能有效地提取Web资源的特征,而且能够挖掘隐含在Web资源内部的本征信息;此时,描述Web资源特征的数据位于低维空间,有利于资源的进一步处理。基于最大差异延展算法的Web资源描述方法有效地解决了Web资源的描述问题。通过仿真实验证明了此方法的有效性。
Resource space model was proposed and manifold learning approach was applied to solve the problem of Web resource feature description in virtual computing environment. Firstly,Web resources are translated into a data set in high dimensional space by applying resource space model effectively. Then features of the resources are extracted by employing a manifold learning algorithm-Maximum Variance Unfolding. It can not only efficiently extract the features of Web resources,but also can discover the latent information. Since representations of Web resources are now in a low dimensional space,it is of great advantage for the further processing of resources. Simulated experiments illustrate the validity of proposed method.
出处
《系统仿真学报》
EI
CAS
CSCD
北大核心
2008年第20期5553-5557,共5页
Journal of System Simulation
基金
"九七三"重点基础研究发展规划项目(2005CB321800)
国家自然科学基金(60673090)
关键词
Web资源描述
资源空间模型
流形学习
维数约减
最大差异延展算法
Web resource description, resource space model, manifold learning, dimensionality reduction, maximum variance unfolding