期刊文献+

二能级开放量子系统相干保持的最优控制策略

Optimal Control Strategy for Coherence-preserving Based on Two-level Open Quantum Systems
下载PDF
导出
摘要 二能级量子系统在开放环境下的相干保持是量子器件实用化的关键。针对二能级开放量子系统的相干保持问题,首先将系统的主方程模型转化为实向量空间上的状态空间模型。然后借助经典最优控制的思想,提出了一种既保证系统控制能量最小,同时又最大程度的减小消相干的最优控制策略。最后就一个典型的二能级开放量子系统仿真实现其相干保持,仿真结果显示了该方案的优越性。 The coherence-preserving of two-level open quantum systems is recognized as a key to preserve the striking feature of the parallel character of the quantum information processing,which is crucial for implementing the quantum theory into reality. Aiming at the problem,in order to reduce this unexpected decoherence effect,the quantum master equation was mainly investigated. The orthogonal basis of geometric algebra was used to convert the quantum master equation into the state-space model, in which the useful coherent vector was attained. Then the corresponding recursive optimal control algorithm was designed to achieve both the maximal suppression of decoherence and the control energy minimizing based on a typical two-level quantum system. Afterwards,some tips of how to choose the parameters were discussed. Simulation results verify its effectiveness and superiority to coherence-preserving.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第20期5605-5609,共5页 Journal of System Simulation
基金 中国科学技术大学研究生创新基金资助(KD2006040)
关键词 二能级开放量子系统 相干保持 主方程模型 状态空间模型 相干向量 最优控制 two-level open quantum systems, coherence-preserving, master equation, state-space model, coherent vector, optimal control
  • 相关文献

参考文献16

  • 1Preskill J. Lecture Notes for Physics 229: Quantum Information and Computation [M]. California: California Institute of Technology. 1998.
  • 2Shor P W. Algorithms for quantum computation: discrete algorithms and factoring [C]// Proceeding of the 35th Annual Symposium on Foundation of Computer Science 1994, 11, Santa Fe, NM, USA. USA: IEEE Computer Society Press, 1994:124-134.
  • 3Gardiner C W, Zoller F, Quantum Noise: A Handbook of Markovian and non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics [M]. Berlin: Springer, c2000.
  • 4Shor P W. Scheme for Reducing Decoherence in Quantum Computer Memory [J]. Phys. Rev. A (S1094-1622), 1995, 52(4): R2493-R2496.
  • 5Duan L M, Guo G C. Preserving coherence in quantum computation by pairing quantum bits [J]. Phys. Rev. Lett. (S1079-7114), 1997, 79(10): 1953-1956.
  • 6Lloyd S. Coherent Quantum Feedback [J]. Phys. Rev. A (S 1094-1622), 2000, 62(2): 1-12.
  • 7Adelsward A, Wallentowitz S. Rotational master equation for cold laser-driven molecules [J]. Phys. Rev. A (St094-1622), 2003, 67(6): 063805.
  • 8Lidar D A, Schneider S. Stabilizing Qubit Coherence via Tracking Control [J]. Quantum Information and Computation (S1533-7146), 2005, 5(4): 350-363.
  • 9张靖,李春文,吴建武.Markov开放量子系统噪声解耦消相干抑制策略[C]//第25届中国控制会议论文集2006.8,哈尔滨,黑龙江.北京:北京航空航天大学出版社2006:2109-2112.
  • 10张靖,李春文,吴热冰.开放环境下多比特量子计算机的相干控制模型[J].自动化学报,2005,31(5):759-764. 被引量:2

二级参考文献33

  • 1董道毅,陈宗海.电子自旋的时间量子控制[J].控制与决策,2006,21(1):38-41. 被引量:4
  • 2Nielsen M A,Chuang I L.Quantum Computation and Quantum Information[M].England:Cambridge University Press,2000.
  • 3Shor P W.Polynomial-time Algorithms for Quantum Computation Discretelog and Factoring[A].Proc 35th Annual Symp on Foundations of Computer Science[C].Santa Fe,1994:124-134.
  • 4Shor P W.Scheme for Reducing Decoherence in Quantum Computer Memory[J].Physical Review A,1995,52(4):2493-2496.
  • 5Duan L M,Guo G C.Preserving Coherence in Quantum Computation by Pairing Quantum Bits[J].Physical Review Letter,1997,79(10):1953-1956.
  • 6Viola L,Lloyd S.Dynamical Suppression of Decoherence in Two-state Quantum Systems[J].Physical Review A,1998,58(4):2733-2744.
  • 7D'Alessandro D,Dobrovivitski V.Control of a Two Level Open Quantum Ssystem[A].Proc 41th IEEE Conf on Decision and Control[C].Las Vegas,2002:40-45.
  • 8Zhang J,Li C W,Wu R B,et al.Maximal Suppression of Decoherence in Markovian Quantum Systems[J].J of Physics A:Mathematical and General,2005,38(29):6587-6601.
  • 9Lidar D A,Schneider S.Stabilizing Qubit Coherence via Tracking Control[J].Quantum Information and Computation,2005,5(4):350-363.
  • 10Puri R R.Mathematical Methods of Quantum Optics[M].Berlin,New York:Springer,2001.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部