期刊文献+

基于伪谱方法的自适应鲁棒实时再入制导律研究 被引量:3

Real Time Robust Adaptive Reentry Guidance Law Based on Pseudo-Spectral Method
下载PDF
导出
摘要 为了提高飞行器再入制导的鲁棒性和自适应性,将再入弹道跟踪问题转化为再入弹道状态调节问题,得到了一个LTV系统最优控制问题。在此基础上,利用基于伪谱算法的最优反馈控制算法,设计了一种便于在线实现的自适应鲁棒再入制导律。仿真结果表明,这种再入制导律对于再入点误差不敏感,具有良好的鲁棒性。在气动参数模型存在较大误差的情况下,依然能够取得较高的再入制导精度。它不需要显示增益调度和积分,并且在不同情况下控制结构和参数无需改变。 In order to improve the autonomous,robustness and adaptive of reentry guidance law,the trajectory following problem was transformed into a trajectory state regulation problem,which was a linear time varying system. Based on optimal feedback control algorithm from pseudo-spectral method,an adaptive reentry guidance law,easy to run on board,was investigated. Simulation results indicate that the reentry guidance law is insensitive to reentry point disturbance,aerodynamic parameters disturbance. It has good reentry accuracy even in the case of some large disturbance and needn’t explicit gain schedule and integral while the control scheme and parameters are constant for different circumstances.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第20期5623-5626,5634,共5页 Journal of System Simulation
基金 国家863计划项目 教育部博士点基金项目 博士后基金项目(20070411130)
关键词 再入制导 伪谱方法 弹道跟踪 线性时变系统 reentry guidance, pseudo-spectral method, trajectory track, linear time varying system
  • 相关文献

参考文献10

  • 1陈刚.天基对地攻击武器再入弹道与制导研究[D].西安:西北工业大学,2006.
  • 2Roenneke A J, Comwell P J. Trajectory Control for a Low-Lift Reentry Profile [J]. Journal of Guidance, Controland Dynamics (S0731-5090), 1993, 16(5): 927-933.
  • 3Roenneke A J, Markl A. Reentry Control to a Drag-vs-Energy Profile [J]. Journal of Guidance, Control and Dynamics (S0731-5090), 1994, 17(5): 916-920.
  • 4Ping Lu. Regulation About Time-Varying Trajectories: Precision Entry Guidance Illustrated [J]. Journal of Guidance, Control and Dynamics (S0731-5090), 1999, 22(6): 784-790.
  • 5Ping Lu. Closed-Form Control Laws for Linear Time-Varying Systems [J]. IEEE Trans. On Automatic Control (S0018-9286), 2000,45(3): 537-542.
  • 6Ross I M, D'Souza C, Faroo F, et al. A Fast Approach to Multi-Stage Launch Vehicle Trajectory Optimization [R]// AIAA-2003-5639. USA: AIAA, 2003.
  • 7Fahroo F, David D. A Direct Method for Approach and Landing Trajectory Reshaping with Failure Effect Estimation [R]// AIAA- 2004-4772. USA: AIAA, 2004.
  • 8Hui Yan, Fahroo F, Ross 1 M. Optimal Feedback Control Laws by Legendre Pseudospectural Approximations [R]// Proceedings of The American Conference, 2001. USA: IEEE, 2001: 2388-2393.
  • 9Ross I M, Fahroo F. A Unified Computational Framework for RealTime Optimal Control [R]// Proceeding of 42ndConference on Decision and Control, 2003. USA: IEEE, 2003:2210 - 2215.
  • 10陈刚,万自明,徐敏,陈士橹.飞行器轨迹优化应用遗传算法的参数化与约束处理方法研究[J].系统仿真学报,2005,17(11):2737-2740. 被引量:17

二级参考文献9

  • 1John T B. Survey of Numerical Methods for Trajectory Optimization[J]. Journal of Guidance, Control and ynamics,1998,21 (3):193-207.
  • 2Peter F, Anthony J. Optimization of Launch Vehicle Ascent Trajectories with Path Constraints and Coast Arcs [J]. Journal of Guidance, Control and Dynamics, 2001,24(2):296-304.
  • 3Chung-Feng, Chen-Yuan. Improved Gradient -Type Algorithms for Zero Terminal Gradient Control Problem [J]. Journal of Dynamic System, Measurement and Control, 1987,109(12):355-362.
  • 4Garald A R, Converstone-Crroll V. Near-optimal Low-thrust Orbit Transfers Generated by a Genetic Algorithm[J]. Journal of Spacecraft and Rockets, 1996,33(6):859-862.
  • 5Coverstone-Crroll V.Near-Optimal Low-Thrust Trajectories via Microgenetic Algorithms[J]. JJournal of Guidance, Control and Dynamics, 1996,20(1):196-198.
  • 6John W H, Coverstone-Crroll V, Steven N W. Optimal Interplanetary Spacecraft Trajectories via a Pareto Genetic Algorithm[J]. The Journal of the Astronautical Sciences, 1998, 46(3):267-282.
  • 7Hull D G. Conversion of Optimal Control Problems into Parameter Optimization Problems[J]. Journal of Guidance, Control and Dynamics, 1997, 20(1): 57-60.
  • 8Joines J A, Houck C R. On the use of no-stationary Penalty Function to Solve nonlinear Constrained Optimization Problems With GAS[C].Proceeding of the Evolutionary Computation Conference, Ornado,1994.
  • 9吴志远,邵惠鹤,吴新余.基于遗传算法的退火精确罚函数非线性约束优化方法[J].控制与决策,1998,13(2):136-140. 被引量:75

共引文献17

同被引文献55

引证文献3

二级引证文献98

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部