期刊文献+

一种稳健的空中目标跟踪方法 被引量:2

Robust Object Tracking for Realistic Air Target
下载PDF
导出
摘要 提出了一种稳健的空中目标跟踪方法。该方法基于MAD构造了一种新的梯度特征相似度量算法,在梯度特征空间对目标进行匹配定位。为适应跟踪过程中目标的大小变化,利用自适应调整模板尺寸的方法在跟踪过程中调整目标模板大小,增强了对具有强机动特点的空中目标跟踪的稳定性。仿真结果表明,跟踪算法能够适应飞机在短期跟踪过程中由机动动作产生的快速形变,以及由形变带来的目标自身灰度上的剧烈变化和在长期跟踪过程中的大小变化,实现了对空中目标的稳定跟踪。 A robust method for tracking realistic air target with rapid changes in image sequences was proposed. A novel similarity measure of gradient features and adaptive window method was used to track air target with changes in viewpoint,pose,illumination and scale. By giving each pixel different power in target template,the similarity measure of gradient features was proposed based on MAD. And special attention was paid to adjust the size of target template while tracking. The basic idea of adaptive window method is to maintain the occupancy rate of the target gradient feature within a specified range. Experimental results using battleplane sequences confirm that the proposed algorithm is robust to the rapid changes in short term and the size change in long term of air target.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第20期5687-5690,共4页 Journal of System Simulation
基金 国家自然科学基金资助项目(60572151)
关键词 自适应窗口 梯度特征 相似性度量 空中目标 adaptive window, gradient feature, similarity measure, air target
  • 相关文献

参考文献10

  • 1Jianbo Shi, Carlo Tomasi. Good Features To Track [C]// IEEE Conference on Computer Vision and Pattern Recognition, Seattle, 1994. USA: IEEE, 1994: 593-600.
  • 2David Vignon, Brian C Lovell, Robert .1 Andrews. General Purpose Real-Time Object Tracking Using Hausdorff Transforms [C]// Special Session on Intelligent Systems for Video Processing, IPMU2002. France: Annecy, 2002:1-6.
  • 3N Dalai, B Triggs. Histograms of oriented gradients for human detection [J]. Computer Vision and Pattern Recognition (S1063- 6919), 2005, 1(2): 886 893.
  • 4D Comaniciu, V Ramesh, P Meer. Real-time tracking of non-rigid objects using mean shift [J]. Computer Vision and Pattern Recognition ($1000-9825), 2000, 2(12): 142-149.
  • 5T F Cootes, G V Weeler, K N Walker, C J Taylor. View-based active appearance models [J], Image and Vision Computing (S1000-9825), 2002, 20(9): 657-664.
  • 6L Vacchetti, V Lepetit, P Fua. Fusing online and offline information for stable 3D tracking in real-time [J]. Computer Vision and Pattern Recognition (S 1063-6919), 2003, 2(6): 241-248.
  • 7J G Son, C W Lim, I Choi, N C Kim. Adaptive window method with sizing vectors for reliable correlation-based target tracking [J]. IEICE TRANSACTIONS on Information and Systems, 2002, E85-D(6): 1015-1021.
  • 8吴越,马利庄,朱江.自适应跟踪算法在增强现实中的应用[J].系统仿真学报,2006,18(10):2840-2842. 被引量:5
  • 9林明秀,刘伟佳,徐心和.基于模板匹配的多模式车辆跟踪算法[J].系统仿真学报,2007,19(7):1519-1522. 被引量:13
  • 10胡洪涛,敬忠良,田宏伟,胡士强.基于“当前”统计模型的模糊自适应跟踪算法[J].系统仿真学报,2005,17(2):293-295. 被引量:29

二级参考文献17

  • 1朱淼良,姚远,蒋云良.增强现实综述[J].中国图象图形学报(A辑),2004,9(7):767-774. 被引量:204
  • 2熊友军,李世其,柳祖国.跟踪注册的增强现实技术研究[J].计算机应用研究,2005,22(4):81-83. 被引量:11
  • 3Ding Z, Leung H, Chan K, Zhiwen Z. Model-set adaptation using a fuzzy Kalman filter [J]. Mathematical and Computer Modeling, 2001, 34: 799-812.
  • 4Chan K, Lee V, Leung H. Radar tracking for air surveillance in a stressful environment using a fuzzy-gain filter [J]. IEEE Trans Aerosp Electron Syst, 1997, 5(1): 80-89.
  • 5Romanenko A, Castro J. The unscented filter as a alternative to the EKF for nonlinear state estimation: a simulation case study [J]. Computers and Chemical Engineering, 2004, 28: 347-355.
  • 6Julier S J, Uhlmann J K. Unscented Filtering and Nonlinear Estimation [J]. Proceedings of the IEEE, 2004, 92(3): 401-422.
  • 7CastlemanKennethR.数字图像处理[M].北京:电子工业出版社,1998..
  • 8Tom caudell. AR at boeing (1990) [EB/OL], http://www.ipo.tue.nl/homepages/mrauterb/presentations/HCI-history/tsld096.htm.
  • 9Mark Billinghurst, Hirokazu Kato, Ivan Poupyrev. The MagicBook:A Transitional AR Interface [J]. Computers and Graphics, 2001, 25:745-753
  • 10James R. Vallino. Interactive Augmented Reality [D]. PhD Thesis,University of Rochester, Rochester, NY. 1998.

共引文献44

同被引文献24

  • 1李乡儒,吴福朝,胡占义.均值漂移算法的收敛性[J].软件学报,2005,16(3):365-374. 被引量:88
  • 2朱胜利,朱善安,李旭超.快速运动目标的Mean shift跟踪算法[J].光电工程,2006,33(5):66-70. 被引量:50
  • 3朱继玉,王西颖,王威信,戴国忠.基于结构分析的手势识别[J].计算机学报,2006,29(12):2130-2137. 被引量:26
  • 4文志强,蔡自兴.Mean Shift算法的收敛性分析[J].软件学报,2007,18(2):205-212. 被引量:48
  • 5BERCLAZ J,FLEURET F,FUA P.Robust people tracking with global trajectory optimization[C/OL].[2009-08-20].http://spg.ict.ac.cn/paper/searchCassetByAuthor.action?authorId=67664&text=Fua,%20p.
  • 6COMANICIU D,MEER P.Mean shift analysis and applications[C]//Proc of the IEEE Int'l Conf on Computer Vision.Kerkyra:[s.n.],1999:1197-1203.
  • 7CHENG Y.Mean shift,mode seeking,and clustering[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1995,17(8):790-799.
  • 8WUA K,YANG M.Mean shift-based clustering[J].Pattern Recognition,2007,40:3035-3052.
  • 9Chen Fengsheng,Fu C M,Huang C L.Hand Gesture Recognition Using a Real-Time Tracking Method and Hidden Markov Models.Image and Vision Computing,2003,21(8):745-758.
  • 10Comaniciu D,Meet P.Mean Shift Analysis and Apphcations//Proc of the IEEE International Conference on Computer Vision.Kerkyra,Greece.1999,Ⅱ:1197-1203.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部