期刊文献+

基于时空混沌的视频流加密算法

Encryption algorithm for video stream based on spatiotemporal chaos
下载PDF
导出
摘要 基于视频具有数据量大、实时性要求高等特点,在一维耦合映像格子模型的基础上,对耦合格点结构和动力学模型这两个方面进行了改进,在系统结构上采用一维链加二维网格再加上一维链的组合模型来构造驱动和响应系统及多级加密的方案。实验结果表明,系统在增强密钥序列复杂度的同时也提高了加密效率,使得系统的抗破译能力大大加强。 As for video having the characteristic ofa big data flow and real-time, on the basis ofthe one-dimension coupled map lattices model, both the structure of coupled lattices and the dynamics model are improved. And it adopts the combined model such as one-dimension chain plus two-dimension lattices plus one-dimension chain to construct drive-response system and multilevel-encryption scheme. The trial results show that this not only strengthens the complexity of the encryption sequences, but also enhances the encrypted efficiency, which makes the secure communication system have high security and strengthened non-cracked ability.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第20期5166-5170,共5页 Computer Engineering and Design
关键词 时空混沌 视频流 加密 耦合映像格子 保密通信 spatiotemporal chaos video stream encryption coupled map lattices secure communication
  • 相关文献

参考文献12

  • 1温孝东,黄荣怀,胡岗,叶卫平,纪多颖.一种时空混沌保密语音会议系统的实现[J].北京师范大学学报(自然科学版),2005,41(2):142-145. 被引量:3
  • 2张雪锋,范九伦.改进的混沌序列产生方法[J].计算机工程与设计,2007,28(3):600-601. 被引量:14
  • 3Douglas R Frey.Chaotic digital encoding:An approach to secure communication[J].IEEE Transactions on Circuits and Systems- II:Analog and Digital Signal Processing,1993,40(10):660-665.
  • 4Hu Gang, Wang Shihong, Kuang Jinyu. Chaos secure communications in a large community[J].Phys Rev E,2002,66(6): 65202.
  • 5Dnutriev A S,Panas A I,Starkov S O.Experiments on speech and music signals transmission using chaos [J]. Int J Bifurc Chaos, 1995,5(4): 1249-1254.
  • 6Robert Matthews.On the derivation of a "chaotic" encryption algorithm[J] .Cryptolologia, 1989,8( 1 ):29-41.
  • 7Wu C W. Global synchronization in coupled map lattices [C]. IEEE ISCAS,Monterey, 1998:302-305.
  • 8John R Terry, Gregory D Van Wiggeren.Chaotic communication using generalized synchronization Chaos[J].Solition and Fractals,2001,12(1): 145-152.
  • 9Maritan A, Banavar J R. Chaos, noise and synchronization [J]. Phys Rev Lett, 1994,72(11 ): 1451 - 1454.
  • 10Parlitz U, Junge L, Kocarev L. Synchronization-based parameter estimation from time series [J]. Phys Rev E, 1996,54: 6253-6259.

二级参考文献35

  • 1廉士国,王执铨.Standard映射及其三维扩展在多媒体加密中的应用[J].东南大学学报(自然科学版),2003,33(z1):90-94. 被引量:5
  • 2CODREANU S. Synchronization of spatiotemporal nonlinear dynamical systems by an active control[J]. Chaos, Solitons and Fractals, 2003, 15(3):507-510.
  • 3PARMANANDA P, JIANG Y. Synchronization of spatiotemporal chemical chaos using random signals[J]. Phys Lett A, 1998, 241(3):173-178.
  • 4TORAI R, MIRASSO C R, Hernandez-Garcia E, et al. Analytical and numerical studies of noise-induced synchronization of chaotic systems[J]. CHAOS, 2001,11(3): 665-673.
  • 5COLET P, BRAIMAN Y. Control of chaos in multimode solid state lasers by the use of small periodic perturbations[J]. Phys Rev E,1995,53(1): 200-206.
  • 6MIRUS K A, SPROTT J C. Controlling chaos in a high dimensional system with periodic parametric perturbations[J]. Phys Lett A,1999,254(5): 275-278.
  • 7JIANG Y, PARMAMANDA P. Synchronization of spatiotemporal chaos in asymmetrically coupled map lattices[J]. Phys Rev E, 1998,57(4): 4135-4139.
  • 8WANG J, CHEN G, QIN T, et al. Synchronizing spatiotemporal chaos in coupled map lattices via active-passive decomposition[J]. Phys Rev E, 1998,58(3): 3017-3021.
  • 9KOCAREV L, PARITZ U. General approach for chaotic synchronization with applications to communication[J]. Phys Rev Lett,1995,74(25):5028-5031.
  • 10XIAO J, HU G, QU Z. Synchronization of spatiotemporal chaos and its application to multichannel spread-spectrum communication[J]. Phys Rev Lett, 1996,77(20): 4162-4165.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部