期刊文献+

TPR-树性能优化研究

Research and improvement of TPR-Tree
下载PDF
导出
摘要 为了降低TPR-树的时间复杂度、提高查询效率,提出结点分裂的改进算法及基于距离的结构调整策略。改进算法把TPBR(time-pararneterized bounding rectangle)在某时间段内的周长定积分作为代价函数,并在投影定积分值最大的轴上进行结点分裂,做到了同时兼顾移动对象的空间属性与速度属性。在结构调整策略中通过删除结点中移动距离超过阈值的记录,从而使TPBRs的扩张速度变慢,在一定程度上抑制了TPBRs之间的重叠。实验结果表明,与原TPR-树结点分裂算法相比,改进后的结点分裂算法的运行时间降低了5~8倍,查询性能至少提高了50%,而且,在此基础上应用基于距离的结构调整策略使查询性能进一步提高约10%。 In order to reduce the complexity of algorithms and enhance the efficiency of TPR-tree, an improved node-split algorithm and a distance-based structure adjusting policy are proposed. The definite integral of perimeter for TPBR (time-parameterized bounding rectangle) within a period of time is considered as penalty metrics in the improved algorithm, which also decides a split axis as the one with the smaUest projection definite integral value. The distance-based structure adjusting policy makes slow the expand speed of TPBRs by deleting the records of objects that move too far. The experimental comparison shows that the complexity of improved node-split algorithm is only 12-20% of primary node-split algorithm of TPR-tree, and the TPR-tree used improved node-split algorithm whose query performance is up to 50% better than the primary TPR-tree. Furthermore, the query performance of TPR-tree used distance-based structure adjusting policy can also increase by 10% or so solely.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第20期5360-5363,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(60603041) 江苏省高校自然科学基金项目(05KJB520017)
关键词 时空数据库 预测索引 TPR-树 TPBR 查询性能 STDB predictive index TPR-tree TPBR search performance
  • 相关文献

参考文献8

  • 1Saltenis S,Jensen C S,Leutengegger S T, et al.Indexing the positions of continuously moving objects[C].Proc ACM SIGMOD, 2000.
  • 2Tao Y, Papadias D,Sun J.The TPR^*-Tree:An optimized spatiotemporal access method for predictive queries[C].Proc of the Intl Confon Very Large Data Bases.2003:790-801.
  • 3闫秋艳,孟凡荣.多版本TPR_TREE[J].计算机工程与设计,2004,25(10):1811-1813. 被引量:1
  • 4Tayeb J,Ulusoy O,Wolfson O.A quadtree based dynanuc atmbute indexing method[J].Computer Journal, 1998,41 (3): 185-200.
  • 5Frentzos E.Indexing objects moving on fixed networks[C].Proc of the 8th Intl Symp on Spatial and Temporal Databases(SSTD), 2003:289-305.
  • 6Saltenis S,Jensen C S.Indexing of moving objects for location-based services[C].Proc of Data Engineering,2002:463- 472.
  • 7Guttman A.R-trees:A dynamic index structure for spatial searc-hing[C].Boston, MA:Proc of the ACMSIGMOD, 1984:47- 57.
  • 8Beckmann N,Kriegel H P, Schneid R, et al.The R^*-tree:An efficient and robust access method for points and rectangles[C]. Atlantic City,New Jersey:Proceedings of SIGMOD, 1990:322-331.

二级参考文献5

  • 1Zimbrao Geraldo, Souza Jano Moreira. The temporal R-tree[C].Programa de Engenharia de Sistemas e Computacao, ES-492/99,1999.
  • 2Guttman A. R-tree: A dynamic index structure for spatial searching [C].ACM SIGMOD'84,1984.47-57.
  • 3Saltenis S,Jensen C S,Leutenegger S T, et al. Indexing the positions of continuously moving objects[C]. In ACM Proc of SIGMOD'00,2000. 331-342.
  • 4Garcia-Molina Hector,Ullman D Jeffrey,Widom Jennifer.数据库系统实现[M].北京:机械工业出版社,2001.
  • 5Elmasri R, Wuu GTJv, Kim Y J. An access structure for temporal data[C]. In 16th VLDB, 1990.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部