期刊文献+

有色噪声系统的迭代辨识与递推辨识方法仿真比较研究 被引量:4

Comparison of Iterative and Recursive Identification for Systems with Colored Noises
下载PDF
导出
摘要 针对ARARX模型(即动态调节模型),提出了分别辨识系统模型参数向量和噪声模型参数向量的新型最小二乘迭代辨识方法。其基本思想是:通过极小化一个信息矩阵中含噪声项的准则函数,导出两个参数向量的最小二乘估计式,进一步将估计式中信息矩阵所含的未知噪声项用其迭代估计代替,而其迭代估计又用前一次迭代的参数估计进行计算。在每步迭代计算中,二者执行了一个递阶计算过程。与滤波式递推广义最小二乘算法相比,提出的迭代算法也可用于在线辨识,而且在每一步迭代计算中,反复利用了系统可测数据信息,因而能够获得高精度参数估计。仿真例子证实了理论研究结果。 For stochastic systems described by the controlled ARAR models (CARAR models), namely, dynamical adjusting models, a new-type least-squares-iterative algorithm of identifying the system parameter vector and noise parameter vector was proposed respectively. The basic idea is to derive the least squares estimation of the these two parameter vectors by minimizing the criterion function with the information matrix containing unknown noise terms, which are replaced with their corresponding iterative estimation computed by using the preceding parameter estimates. They perform a hierarchical computational process. Comparing with the recursive generalized least squares algorithms with data filtered by using the estimated noise models, the proposed iterative algorithms are also suitable for on-line identification and make full use of all data at each iteration and thus highly accurate parameter estimates can be obtained. Simulation example confirms the theoretical results.
作者 陈晓伟 丁锋
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第21期5758-5762,共5页 Journal of System Simulation
基金 国家自然科学基金(60574051) 江苏省自然科学基金项目(BK2007017) 江南大学创新团队发展计划资助
关键词 递推辨识 迭代辨识 参数估计 最小二乘 ARARX模型 recursive identification iterative identification parameter estimation least squares ARARX models
  • 相关文献

参考文献13

  • 1丁锋,杨慧中,纪志成.时变系统辨识方法及其收敛定理[J].江南大学学报(自然科学版),2006,5(1):115-126. 被引量:20
  • 2丁锋,杨慧中.基于梯度的扰动时变系统辨识算法及其收敛性[J].江南大学学报(自然科学版),2005,4(3):221-226. 被引量:4
  • 3Lai T L. Extended least squares and their applications to adaptive control and prediction in linear systems [J]. IEEE Transactions on Automatic Control, 1986, 31(10): 898-906.
  • 4Solo V. The convergence of AML [J]. IEEE Transactions on Automatic Control, 1979, 24(6): 958-962.
  • 5谢新民 丁锋.自适应控制系统[M].北京:清华大学出版社,2003..
  • 6Goodwin G C, Sin K S. Adaptive filtering prediction and control [M]. Englewood Cliffs, New Jersey: Prentice-hall, Inc., 1984.
  • 7Ding Feng, Shi Y, Chen T. Performance analysis of estimation algorithms of non-stationary ARMA processes [J]. IEEE Transactions on Signal Processing, 2006, 54(3): 1041-1053.
  • 8Ding F, Chen T. Identification of Hammerstein nonlinear ARMAX systems [J]. Automatica, 2005, 41(9): 1479-1489.
  • 9Ding Feng, Shi Y, Chen T. Gradient-based identification methods for Hammerstein nonlinear ARMAX models [J]. Nonlinear Dynamics, 2006, 45(1-2): 31-43.
  • 10Ding Feng, Chen T. Hierarchical gradient-based identification of multivariable discrete-time systems [J]. Automatica, 2005, 41(2): 315-325.

二级参考文献53

共引文献37

同被引文献53

  • 1张勇,杨慧中,丁锋.有色噪声干扰下的一种系统辨识方法[J].南京航空航天大学学报,2006,38(B07):167-171. 被引量:25
  • 2杨慧中,张勇.Box-Jenkins模型偏差补偿方法与其他辨识方法的比较[J].控制理论与应用,2007,24(2):215-222. 被引量:13
  • 3Ding F,Chen T.Identification of Hammerstein Nonlinear ARMAX Systems[J].Automatica,2005,41(9):1479-1489.
  • 4Ding Feng,Shi Y,Chen T.Gradient-based Identification Methods for Hammerstein Nonlinear ARMAX Models[J].Nonlinear Dynamics,2006,45(1-2):31-43.
  • 5Springer.Identification and Control:The Gap Between Theory and Practive[M].Springer-Verlag New York,LLC,2007.
  • 6顾晓宇.基于v-gap度量的迭代辨识与控制方法研究[D].天津大学出版社,2008.
  • 7Zhu Y C.System Identification for Process Control:Recent Experience Sand Out Look,IFAC SYSID Technical Program,2006:1-42.
  • 8Ding Feng,Shi Y,Chen T.Performance Analysis of Estimation Algorithms of Non-stationary ARMA Processes[J].IEEE Transactions on Signal Processing,2006,54(3):1041-1053.
  • 9Ding F, Chen T. Identification of Hammerstein nonlinear ARMAX systems [J]. Automatiea, 2005,41 ( 9 ) : 1479- 1489.
  • 10Ding F, Shi Y, Chen T. Gradient-based identification methods for Hammerstein nonlinear ARMAX models [J]. Nonlinear Dynamics, 2006,45 ( 1/2 ) : 31-43.

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部