期刊文献+

基于自组织特征映射网络的聋人无损听觉补偿方法的研究

Deaf Hearing Non-invasive Remedy Based on Self-organizing Feature Map
下载PDF
导出
摘要 利用其他感知通路提供的信息可以对聋人进行无损的听觉补偿。提出了一种基于自组织特征映射网络的聋人无损听觉补偿方法。聋人利用自组织特征映射网络输出层的可视化信息监听自己的声音。结果表明,自组织特征为提高聋人的语言功能提供一种新的途径。 Humans suffering from a range of communication (speech and hearing) disorder may access the auditory information through other perceptional pathway. The application of the self-organized feature map was explored using for the deaf to help improve the ability of pronunciation. The deaf-impaired learn to speak by visual information, just as normal people learn to speak by hearing. It is shown that the proposed method may be a useful speech therapy tool.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第21期5833-5835,5839,共4页 Journal of System Simulation
基金 国家自然科学基金(50477015)
关键词 感知通路 听觉补偿 自组织特征映射 聋人 可视化信息 perceptional pathway hearing remedy self-organizing feature map the deaf visual information
  • 相关文献

参考文献9

  • 1Jake R, Lionel T. Learning pronunciation with the Visual ear [J]. Neural Computing & Applications (S0941-0643), 1993, 1(3): 169-175.
  • 2Osogami Y, Ishida Y. A speech improver for hearing-impaired children using the DP matching and the SOM [C]// Proceedings of Digital Processing Applications. Perth, Western Australia: the Institute of Electrical and Electronics Engineers, 1996, 1: 25-30.
  • 3Kohonen T. The self-organizing map [J]. Proceedings of the IEEE (S0018-9219), 1990, 78(9): 1464-1480.
  • 4Kohonen T. Self-organized formation of topologically correct feature maps [J]. Biological Cybernetics (S0340-1200), 1982, 43(1): 59-69.
  • 5Penn B S. Using self-organizing maps to visualize high-dimensional data [J]. Computers & Geosciences (S0098-3004), 2005, 31(5): 531-544
  • 6Vesanto J. SOM-based data visualization methods [J]. Intelligent Data Analysis (S1088-467X), 1999, 3(2): 111-126.
  • 7Ge Peterson H L B. Control Methods Used in a Study of the Vowels [J]. J. Acoust. Soc. Am. (S0001-4966), 1952, 24(2): 175-194.
  • 8史笑兴,顾明亮,王太君,何振亚.一种时间规整算法在神经网络语音识别中的应用[J].东南大学学报(自然科学版),1999,29(5):47-51. 被引量:9
  • 9Kumar S.Neural Networks[M].(影印版).北京:清华大学出版社,2006:538-540.

二级参考文献1

  • 1Chen Sinhorng,IEEE Trans Speech Audio Processing,1995年,3卷,2期,141页

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部